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CHAPTER 1

Normed Linear Space and Inequalities

In this Chapter, we shall discuss some preliminaries on inequalities, vector spaces
and metric spaces, which can be usefull as a reference material. Further, a study of
normed linear space and its propeties is made. Some examples on space are also dis-
cussed. Finally, the chapter concludes with Cauchy, Holders and Minkowski’s Inequal-
1ties.

Definition 1.1. A vector space or linear space over field F is a set X with operation
called addition X x X to X given by (x,y) — x+y and an operation called scalar mul-
tiplication defined on F x X — X given by (o, x) — o satisfying the following condi-
tions. For all x,y,z€ X and o, € F

i) x+y)+z=x+(+2)
(i) x+y=y+x
(iii)) danelement O € X suchthatx+0=x=x+0
(iv) for each x € X 3 an element —x € X such that x+ (—x) =0 = (—x) +x
(V) a(xty) = oxt ay
(vi) (a+p)x= ox+ Bx,
(vii) (off)x = a(Px)
(viii)) lx=x
The two primary operations in a linear space addition and scalar multiplication are

called the linear operations. The zero element of a linear space is usually referred to as
the origin.

A linear space is called a real linear space or a complex linear space according as the
scalars are real numbers or complex numbers.
Examples of Vector Space

Example 1.2. The set R of all real numbers is a real linear space under addition and
multiplications of real numbers. R is not a vector space over C.

Example 1.3. The set C of all complex numbers is a complex linear space under addi-
tion and multiplications of complex numbers.



Example 1.4. For any positive interger n,

Rﬂ:{(xl,xz,... ,xn) X €ERi= ]72,...,1}

is vector space over with operations

x+y=(x1,%2, %) + V1,2, s yn) = (X1 +Y1,02 Y2, X+ Yn)
and

ox = 0(xp,x0, -+ ,X,) = (OX],QX0, -+, OLXy).

The above operations are called coordinate-wise operations. In a similar manner, C" is
linear space over field of complex numbers.

Linear Transformation
Let U and V be two vector space over same field F. A mapping 7 : U — V is said to be
linear if

() T(x+y)=T(x)+T(y) forallx,y € X
(ii) T(ax) = aT(x) forevery x € X and every a € F.

Definition 1.5. An isomorphism f between linear spaces (over the same scalar field) is
a bijective linear map that is f is bijective and

flox+By) = af(x)+Bf(y)b

Two linear spaces are called isomorphic (or linearly isomorphic) if and only if there
exists an isomorphism between them.

The notion of norm was established in order to give a method to measure the lengh
(magnitude) of a vector. For example, if x = (—1,2,—3,—7,—11) is in R, then ||x|| =
11 is vector norm, which is length of largest coordinate. On the real line norm of vector
||x|| = |x|. In fact the concept of norm is generalization of concept of length that is
familiar for the set of real or complex numbers.

Definition 1.6. A semi-norm on a linear space X is a function p : X — R satisfying

(1) p(x) >0VxeX.
(i) p(ox) = |alp(x) for all x € X and o (scalar)
(iii) p(x+y) <p(x)+p(y) forall x,y € X.
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Property (ii) is called absolute homogeneity of p and property (iii) is called subad-
ditivity of p. Thus a semi-norm is non-negative real, subadditive, absolutely homoge-
neous function of the linear space e.g. p(x) = |x| is a seminorm on the linear space C
of complex numbers. Similarly if f: X — C is a linear map, then p(x) = |f(x)] is a
semi-norm on Xx.

Thus a semi-normed linear space is an ordered pair (x,p) where p is a seminorm
on x.

Definition 1.7. Let X be real (complex ) linear space then a norm on a linear space X
is a function || || : X — R satisfying
(i) ||x]| >0 and ||x|| =0if and only if x =0 forx € X
(ii) [Jowx]} = for].[|x]]
(i) []x+y[| < [lx[[ + [l
we observe that a semi-norm becomes a norm if it satisfies one additional condition

ie.
x| =0 iffx=0

Further, is called norm of x. The non-negative real number||x|| is considered as the
length of the vector x.
A normed linear space is an ordered pair (X, ||.||) where ||.|| is a norm on X.

Metric on Normed linear Spaces

Definition 1.8. Let N be an arbitrary set. It is called a metric space if there exists a
function d : N X N — R (called distance or metric function) satisfying

(i) d(x,y) >0
(ii) d(x,y) =0if and only if x =
(iii) d(x,y) =d(y,x)
(iv) d(x,z) <d(x,y)+d(y,z) [Triangle inequality] for any x,y,z € N.

If d is metric on X, then the ordered pain (N,d) is called a metric space.
Let N be a normed linear space. We introduce a metric in N defined by

d(x,y) = ||x—y| (1)

This metric (distance function) satisfies all axioms of the definition of norm. As



@) [l 20« d(x,y) = 0.
(i) dx,y) =0& |x—y|=0x—y=0<x=)y.
(i) d(x,y) =[x =y = =10 =)l = [ = Ully =x[| = lly = x| = d (%)
(iv) d(x,y) = e =yll = e =y+z =zl < [lx =zl + e =y = d(x,2) +d(z,y).
Hence a normed linear space N is a metric space with respect to the metric d defined
above. But every metric space need not be a normed linear space since in every metric

space there need not be a vector space structure defined e.g. the vector space X # 0
with the discrete metric defined by

d(x,y) 0 ifx=y
x7 = .
Y 1 ifx#y

is not a normed linear space.

Note: The above metric in equation I} has following additional properties: If x,y,z € N
and « a scalar, then

(1) d(x+z,y+z) =||(x+2) — (y+2)|| = |[x —y|]| = d(x,y) (Translation Invariance)
(i) d(owx,ay) = |lox—ayl| = [Ja(x—y)|| = e[ [lx —y[| = [e|d (x, ).

Also it is important to note here that a metric is induced norm only when the above two
properties are satisfied for all value of scalar o.
For discrete metric, If we set o = 2, then

d(ax,ay) # |old(x,y)

as
0 if2x=2yie,x=
d(2x2y) =40 T Y
1 if2x#2yie,x#y
and
0 ifx=
2d(x,y) = Y
2 ifxF#y.

Remark: In the definition of norm ||x|| = 0 < x = 0 is equivalent to the condition

Il 0 i x £ 0
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Also the fact that ||x|| > 0 is implied by the second and third condition of norm
0] = [[0.1]] = 0.][1]| =0

and [|0]| = [l — x[| < [x[| + [|x]| = 2[|x]]
= 2[lx[[ =0
= ||x|| > 0.

Remark: As in the case of real line, the continuity of a function can be given in terms
of convergence of certain sequence. We can alternatively define continuity in terms of
convergence of sequence in normed linear space also.

Definition 1.9. Let (E, ||.||£) and (F,||.||r) be two normed linear spaces respectively.
We say that f is continuous at xp € E if given €> 0,30 > 0 such that

= | f(x) = f(x0)||F <€ whenever ||x —xo||g < J.

Since every normed linear space is a metric space, this definition of continuity is
same in it as the definition of continuity in metric space. Thus f is continuous at xo € E
iff whenever x, — xo in E, f(x,) — f(xo) in F.

Remark: In normed linear spaces, convergence is defined as
x = limx, or x, = x by ||x, —x|| > 0asn —
n

This convergence in normed linear space is called convergence in norm or strong
convergence.

Definition 1.10. A sequence < x,, > in a normed linear space is a Cauchy sequence if
given €> 0, there exists a positive integer mg such that

||Xm — xn|| <€ whenever m,n > my.

Definition 1.11. A normed linear space N is called complete or Banach space iff every
Cauchy sequence in it is convergent that is if for each Cauchy sequence < x, > in N,
there exist an element xy in NV such that x,, — xg. A complete normed linear space is
called a Banach space.

Some properties of Normed Linear Spaces



Theorem 1.12. Let N be a normed linear space over the scalar field F. Then
(i) The map (ox) — ax from F x N — N is continuous
(ii) The map (x,y) — x+y from N x N — N is continuous.

(iii) The map x — ||x|| from N to R is continuous.

Proof: To prove (i) we must show that if o, — a and x,, — x, then oy,x, — o.x.
So we assume o, — o and x, — x i.e. |0, — @] — 0, ||x, —x|| — 0.
Then || a,x, — ox|| = || 04, (x, — x) + (04, — @) x||

< |0t [lxn —xl[ + |0t — ] [|xa]| = O

and so (i) holds.
To prove (ii) we suppose that x, — x,y, — yi.e. |[x, —x|| = 0 and ||y, —y|| = 0.
Then by triangle inequality

1 +3n) = ) = [[(0 =) + (3 = V)
< oen = xl[ + llyn =yl = O

and so x, +y, — x+y and hence (ii) holds. Before proving (iii), we establish the
inequality

el = Iyl < e =l (*)
We note that in a normed linear space

Il = 1y + Ge = < Iyl + lle =¥l
=[xl =yl <l =yl (2)

On interchanging the roles of x and y, we find that

[ F= el < fly =l = fle =y 3)
From (1) and (2), it follows that

el = Iyl < e =l
We now prove (iii). Let x,, — x, then from the above inequality,

[ l[ = [l | < floex = xl[ = O
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which implies that ||x,|| — ||x|| Thus we have shown that x,, — x = [|x,|| — ||x]|-
Thus the map ||.|| : N — R is continuous. Hence the result.

Remark: (i) and (ii) show that scalar multiplication and addition are jointly continuous
where as (iii) shows that norm is a continuous function. (2) The introduction of a norm
in a linear space is called norming.

Theorem 1.13. In a normed linear space, every convergent sequence is a Cauchy se-
quence.

Proof: Suppose that the sequence < x,, > in a normed linear space N converges to
a point xg € N. To show that it is Cauchy sequence, let €> 0 be given. Since the
sequence < x, > converges to xo, there exists a positive integer mg such that n > mo =
[, — xo|| < 5. Hence for all m,n > my, we have

S

€
[P =26l = [ — %0 +x0 =6l | < [ —2x0[| + [bxn = x0]] < 5 + 5 =€

Thus the convergent sequence < x,, > is a Cauchy sequence.

Further Properties of Normed spaces

By definition, a subspace Y of a normed space X is a subspace of X considered as a
vector space, with the norm obtained by restricting the norm on X to the subset Y. This
norm on Y is said to be induced by the norm onX. If Yis closed in X, then Y is called
a closed subspace of X. Thus, a subspace Y of a Banach X is considered as a normed
space. Hence we donot require Y to be complete.

Theorem 1.14. A subspace Y of a Banach space X is complete if and only if the set Y
is closed in X.

Proof: The result directly follows from “A subspace M of a complete metric space X
is itself complete if and only if the set M is closed in X.

Definition 1.15. Infinite series can now be defined in a way similar to that in calculus.
In fact, if < x; >1is a sequence in a normed space X, we can associate with < x; > the
sequence < S, > of partial sums

Sp=xX1+x2+ -+ X,

Forn=1,2....1f < §, > is convergent, say S, — S that is ||S, — S|| — 0,



Then the infinite series or briefly the series

(o)

XK =X +Xx2+ - (1)
K=1

is said to converge or to be convergent, S is called the sum of the series and we write
S = ZXKZX1+X2+"'
K=1

IfS=Y2 | lxxll = llxt]| + |2l +-- - converges, then the series [I] is said to be
absolutely convergent. However in a normed space X absolute convergence implies
convergence if and only if X is complete.

The concept of convergence of a series can be used to define a basis as follows:
If a normed space x contains a sequence < e, > with the property that for every
x € X, there is a unique sequence of scalars < ¢, > such that

llx—(are1 +...+ 0pmen)|| =0 as n— oo (6)

then < e, > is called a Schauder Basis for X. The series

Z Okeék
K=1

which has the sum x is then called the expansion of x with respect to < e, > and we
write .
X = Z Ogeg
K=1
Finite Dimensional Normed Spaces and Subspaces

Theorem 1.16. Every finite dimensional subspace Y of a normed space X is complete.
In particular, every finite dimensional normed space is complete.

Proof:To prove the theorem,first we prove a Lemma,

Lemma. Let {x,x,...,x,} be alinearly independent set of vectors in a normed space
X (of any dimension). Then there is a number C > 0 such that for every choice of
scalars o, 0, ..., 0, we have

llaxr + ...+ opxu|| > C(la|+. .. o) (C>0) (1)
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Proof of Lemma: We write S = |a;| + |ap| + |ay|. If S = 0, all ; are zero, so that (1)
holds for any C. Let S > 0, then (1) is equivalent to the inequality which we obtain from
(1) by dividing by S and writing f8; = o;/S that is

1Bix1+ ...+ Baxall = C(Y_ |Bj| = 1) (2)
j=1

Hence it is sufficient to prove the existence of a C > 0 such that (2) holds for every
n-tuple of scalars f; ... 3, with

Y IBil=1.

Suppose that this is false. Then there exists a sequence < y,, > of vectors

ym=B"x 4B (LB =1)

J=1

such that
lyml| =0 as m— oo.

Since Y| B J(m)| =1, we have |f ](m)| < 1. Hence for each fixed j, the sequence
1) a2
<B" >=<pV B .. >

is bounded. Consequently, by the Bolzano-Weierstrass theorem, < ﬁj(m) > has a con-
vergent subsequence. Let f8; denote the limit of that subsequence and let < yj,, >
denote the corresponding subsequence of <y, ,, >. By the same argument, < yj ,, >
has a subsequence < y,,m > for which the corresponding subsequence of scalars ﬁz(m)
converges, let B, denote the limit-continuing in this way, after n steps we obtain a sub-
sequence

<Yngm >= (Yn1,¥n2,---)  0of <ym>

whose terms are of the form

Ynm = Z Yj(m)x](z ,}/j(m)’ =1)
j=1 j=1

(m)

with scalars yjm (m

satisfying 7; ) Bj asm — oo
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Hence as m — oo,

n
Yum = Y, Bjx;
j=1
where Y |B;| = 1 so that not all 8; can be zero. Since {xi,...,x,} is a linearly indepen-

dent set, we thus have y # 0. On the other hand ,y, ,, — y implies ||y, || — [|y| by the
continuity of the norm. Since ||y,,|| — 0 by assumption and < y, », > is a subsequence
of <y, >, we must have ||y, »|| — 0, Hence ||y|| =0, so that y = 0. But this contradicts
that y # 0, and the lemma is proved.

Now we prove the theorem.

Proof of the theorem. We consider an arbitrary Cauchy sequence < y,, > in Y and
show that it is convergent in Y, the limit will be denoted by y. Let dimY = n and
{e1,ea,...e,} any basis for Y. Then each y,, has a unique representation of the form

Vm = al(m)el S T + o, ‘e,

Since <y, > is a Cauchy sequence, for every €> 0, there is an N such that ||y, —
yn|| <€ when m,r > N. From this and the above Lemma, we have for some C > 0,

)
&> [lym—yel = | Y (0™ —a)e|
=1

J

~

This shows that each of the n sequences

>=< a},a(.z)

(m)
<o $

; yee. > J=22,...,n

is Cauchy in R or C. Hence it converges let o¢; denote the limit. Using these n limits,
ap, 0,...,0,, we define

y=a0oqe1+0per+...+ 0,04
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Clearly y € Y. Further
Iy =1 = 1Y (5" = ay)esl < Y-l =yl les]
j=1 j=1

On the right af" — o;. Hence ||y,, —y|| — 0, that is y,, — y. This shows that < y,, > is
convergent in Y. Since < y,, > was an arbitrary Cauchy sequence in Y.
This proves that Y is complete.

Remark. From the above theorem and the result “A subspace M of a complete metric
space X is complete if and only if the set M is closed in X”, we get the following:

Theorem 1.17. Every finite dimensional subspace Y of a normed space X is closed in
X.

Remark. Infinite dimensional subspaces need not be closed e.g. Let X = C[0, 1] and
Y = span{xq,xi,.....} where x;(t) = t/ s0 Y that is the set of polynomials. Y is not
closed in X.

Quotient Space

Definition 1.18. Let M be a subspace of a linear space L and let the coset of an element
x in Lbe defined by
x+M={x+mmeM}

Then the distinct cosets form a partition of L and if addition and scalar multiplication
are defined by
(x4+M)+(y+M)=(x+y)+M

and
a(x+M)=ax+M

then these cosets constitute a linear space denoted by L/M and called the quotient space
of L with respect to M. The origin in L/M is the coset 0+ M = M and the negative of
x+Mis (—x)+M.

Theorem 1.19. Let M be a closed linear subspace of a normed linear space N. If the
norm of a coset x + M in the quotient space N /M is defined by
llx 4+ M|| = inf{||x+m||;m € M} (1)

Then N/M is a normed linear space. Further if N is a Banach space. Then so is N/M.
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Proof: We first verify that (1) defines a norm in the required sense. It is obvious that
|lx+M]|| > 0. Since ||x+m|| is a non-negative real number and every set of non-negative
;m € M} is non negative.

real numbers is bounded below, it follows that inf {||x+ m
That is
Ix+M|| <0 Vx+MeN/M
Also ||x+ M|| = 0 < there exists a sequence {my } in M such that ||x+my|| — 0
& xisinM
& x+M =M = The zero element of N/M.
Next we have

GrM) + v+ M) = [[(x-+) +M]|
—inf{x+y-+mlm € M)
= inf{||[x+y+m+m'|;mand € M}
=inf{||(x+m)+ (y+n|;m,m € M}
<inf{||x+y+m|;mand € M} +inf{||y+m'||.m" € M}
= [+ M|+ [y + M|

e+ M)|| = inf{jo(x+ M) s € M}

=inf{|a| ||x+m|;m € M}
= |ot| inf{||x +m||;m € M}
= laf [x+ M|

Finally we assume that N is complete and we show that N/M is also complete.

If we start with a Cauchy sequence in N/M, Then it is sufficient to show that this
sequence has a convergent subsequence. It is clearly possible to find a subsequence
{x, + M} of the original Cauchy sequence such that

(o4 M) — (2 4 M) <

and in general
1
|G +-M) = (1 +M) | < 5,
we prove that this sequence is convergent in N/M. We begin by choosing any vector y;
in x; +M and we select y; in x; + M such that ||y; —y2|| < % We next select a vectorys

in x| + M such that ||y, — y3|| < . Continuing in this way we obtain a sequence {y, }
in N such that If m < n, then

[ym = Yull = [|[ym = Ym+1) + Omt1Yme2) + -+ Gn—1 — Yul|
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< |lym = Yme1ll + lyms1 = Yms2ll + -+ yn=1 — yal|

1 1 1
<2_m+2m+1 +"'+2n+1
1
<2—m+W+...+
m
__2
1
1—3
1
:2m+1

So {y,} is a Cauchy sequence in N. Since N is complete, there exists a vector y in N
such that y,, — y. Finally

[(n +M) = (y+M)|| = |bxay + M|
<inf{||x, —y+m|;m € M}
< ||x, —m+yl||for allm € M

But y, = x,, + m,, for some m,, € M
< lyn =yl — 0 since y, —y.

Hence x,+M —y+M € N/M
= N/M is complete.

Definition 1.20. A series ), ,a,,a, € X is said to be convergent to x € X, where
X is a normed linear space if the sequence of partial sums < S, > where S, =Y\ ; a;
converges to x i.e. for every €> 0, there exists ng € N such that ||S, —x|| <& for n > ny.
A series)_; a, is said to be absolutely convergent if Y| ||a,|| is convergent.

Since every normed linear space is a metric space, hence every convergent sequence
in it is Cauchy but not conversely.

The following theorem gives a nice characterization of a Banach space in terms of

series.

Theorem 1.21. A normed linear space is complete if and only if every absolutely con-
vergent series in X is convergent.

Proof: Let X be complete. For each positive integer n, let x,, be an element of X such
that Y=, ||x, || < oo. Let yy = YX_, x,,. Then

k+p k+p

”yp—i-k_))kH = H an_ anH
n=1

n=1
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k
=1l X xl

n=k+1

k

Z ||%n|| — Oask — oo.
n=k+1

IN

Hence <y, >°_, is a Cauchy sequence in X and since X is complete, there exists x € X
such that

k oo
x=lmy,=lim ) x,= ) x
k—>ooy k—>oon;1 " n;l "

Thus the series ) ,°_; x,, converges.

Conversely, let every absolutely convergent series be convergent. Let < x,, > be a
Cauchy sequence in X.
For each positive integer k, 3 a positive integer n; such that

1
(|7 — Xum|| < 5 for allm,n > .
From this, we get
1
X, — X | < forallk=1,2,3,---.
Now, the series

= |
Z|’x”k+l _xnkH < Z_k
1 1

By the hypothesis, }; | (x, . — xp,) has a convergent subsequence < x,, > and so the
whole sequence < x;,, > converges. Hence X is complete.

Riesz Lemma
Let X be a proper closed linear subspace of a normed linear space Xover the field K.
Let 0 < < 1, then d x4 € X such that

|xe || = 1 and inf ||xgq —y|| > o.
yey

Theorem 1.22. Let X be normed linear space. The closed unit ball
B={reX:|x| <1}

in X is compact if and only if X is finite dimensional.
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Proof: Let X be finite dimensional. Since B is closed and bounded. It follows from
Heine-Borel theorem that it is compact.

Conversely suppose that B is compact but X is infinite dimensional. Choose x; € X
with [|x;|| = 1. This x| generates a one-dimensional subspace X; of X.

Since every finite dimensional subspace of a normed linear space is closed, it fol-
lows that X is closed. Now X is a proper subspace of Xand dim X = oo.

By Riesz-Lemma there is an x; € X of norm 1 such that

1
|2 —2x1 ]| > 5

The set {x;,x;} generates a two dimensional proper closed subspace X, of X.
By Riesz Lemma, there is an x3 of norm 1 such that for all x € X,, we have

I = 1
x3—x|| > =
3=

In particular
1
_ >
bz =xil = 5

and

s =]l > 5
3—xll 25

Proceeding by induction, we obtain a sequence < x, > of elements of B such that

1
[|xXm — X || > E(m #n)

i.e. {x,} can not have a convergent subsequence which contradicts the compactness of
B. Hence the result.

Cauchy’s inequality. Let x = (x1,x7,...,x,) and y = (y1,¥2,...,V,) be two n-tuples of
real or complex numbers. Then

1 n

n n 3
Z iyl < [Z ’Xiﬂ [
i=1 i=1

%
il
1

=

Proof: We first remark that if a and b are any two non-negative real numbers, then
a'l2.pl/? < %. Infact, on squaring both sides and rearranging, it is equivalent to 0 <
(a —b)? which is obviously true. If x = 0 or y = 0, the assertion is clear. We therefore
assume that x # 0 or x #% 0 We define a; and b; by

a; = [%} 2:':mdb,- = [%} 2.
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Since a!/2.p1/2 < #.

B o T 21 N

[l Iyl 2

Summing these inequalities as i varies from 1 to n, we obtain

Y iyl < I+1_,
(] ][] 2

and hence

n
3" bl < el
=1
which proves Y7 | [xiyi| < [|x]|. ][l

Minkowski’s-inequality: Let x = (x1,x2,...,x,) and y = (y1,y2,...,Yn) be two n-
tuples of real or complex numbers. Then

1

[ bes]" < [L ]+ L]

i=1
or

eI < el [1v1]-

Proof: Using Cauchy’s inequality, we have the following chain of relations

n

bey11% = Y i+ yil-Jxi il
i=1

n

< Z |xl+yl|(|xl+yl|)

i=1

N

Z |xi + il x| + Z |xi +yil-|yil

i=1 i=
< x4yl IIXI|+|IX+y|| Y
= lloe+ Il =+ 11y1)

If [|x+y|| = 0, the inequality to be proved is trivially true. If ||x+ y|| # 0, then dividing
the inequality (1) through by ||x+y||, we obtain

[l Y[ < el =+ [1v1]-
and Minkowski inequality is established
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Example 1.23. Let p be a real number such that 1 < p < eo. We denote by /7, the space
of all n— tuples x = (x,x2,...,x,) of scalars with the norm defined by

Sk

Il = <i [ 1?)

Since the norm defined in the last example is obviously the special case of this norm
which corresponds to p = 2, so the real and complex spaces /5 are the n-dimensional
Euclidean and unitary spaces R" and C". Let x = (x1,x2,...,X,) and y = (y1,¥2,---,Vn)
and let o be any scalar. Then [} is a linear spaces with respect the operations

X+y= (X] 3 X250t ,Xn> + ()’1,)’27 to 7yn) = (X] FYLX2 Y2, X +yn)
and
ox = a(xy,xp,++ ,xp) = (0X], QXD -+ -, OLXy).
Since the norm introduced above is non-negative and absolute homogeneous, so to

show that [}, is a normed linear space, it is sufficient to prove that

e yllp < [lxllp + Iyl

To show this, we first establish the following inequalities.

Holder’s inequality. Let p and g be real numbers greater than 1, with the properties
that ’—1, + cl] = 1 (Such numbers are called conjugate indices). Then for any complex
number

x=(x1,x2,...,xn) and y:(ylay27"'7yn)'
n n % n é
Y xivil < [Z |Xi|p} + [Z |yi|q}
i=1 i=1 i=1

or in our notations

n
Y bravil < [l p-[lyllg

i=1
Proof: If x = 0 or y = 0 the inequality is obvious. So assume that both are non-zero.

Set » .
X .
a; = [ ! } and b,‘ = [ L }
X[l [1¥[lq

Then using

i bi
a7 <47 (4,5 >0)
P q
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We have
[xiyil + bi
HXHpquH q

or or
biyil L al? 1 il

Iellpllygll = plIxll — a llyllg

Summing these inequalities as i varies from 1 to n, we have

Ti ol LRl R bl

Ixllpllyll , ~ 2 Ixllp g Hqu
1(||x||,)? 1 4
1 (llx[l) +_(||Y||q)

[

1 1
p 9

n
= Y Fxiyil < [lxllp-[1yllg
i=1

We notice that when p = g = 2. Holder’s inequality converts into Cauchy’s inequality.

Minkowski’s inequality: Let p be a real number such that p > 1. Then for any complex

numbers
x = (x1,x2,...,%,) and y:(yl,y27...,yn)

1 n

(3] - 3]’ [Zw}

i=1
lx+yllp < llxllp + 131l

Proof: The inequality is trivial when p = 1. So assume p > 1. Using Holder’s inequal-
ity, we obtain
n
i+ yilh =Y [+ yil?

i=1

|xl +YI’ Hx, "‘YZHP !

|
=

~.
—_

x| i + i P 1+Z|yl||xl+yl|p :
i=1

AN
M:

~.

IA
™= L
=
E
't:

; 1 ERTURt 1
ZIXi+yi|(p D9)a + (Y il )7 ( ZIXHryl
i=1

—1)g

==
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Since (p — 1)q = p, we have

1 1 & 1p 1 1 1p
= () Ixil?)7( Z\xiﬂﬂp )Pa+ Z|)’1|p o ( Z]x,—i—y,|p )ra

=uum+wﬂu>Wx+wW“>
0, then the result is trivial. If ||x+y||, # O, then dividing inequality (1),

If lx+y||, =
throughout by ||x+ sz/ 7 we obtain
b+ y|I5 I+ y|| 5/
T < (x| ] p) - ()
(be+ylI5/4) ~ e+ y|| 5/
-t
= e+ yllp * < llxllp+ vl
p(1—(Ly)
= beylly 7 < lxllp+ Iyl
= e+ y1L < Il + Iyl

; 1,1 _ 1_11
smcep—ka—l:p lq

Thus [lx+yl[, < [l +[I]]-
In view of the Minkowski’s inequality, it follows that /; is a normed linear space as

triangle inequality can be established using this
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CHAPTER 2

Banach Spaces and Its examples.

Particularly useful and important metric spaces are obtained if we take a vector space
and define on it a metric by means of a norm. The resulting space is called normed
linear space. If it is a complete a metric space, it is Banach space. The theory of
normed spaces, in particular Banach space, and the theory of linear operators defined
on them are the most highly developed parts of functional analysis. The present chapter
is devoted to the those basic ideas of those theories.

Definition 2.1. A metric space (X,d) is said to be complete < every Cauchy sequence
in X has convergent subsequence. Or every Cuachy sequence of points of X converges
to some point of X.

Banach Space:- A complete normed linear space is called Banach space OR A
normed space (E,||.||) over field K is called Banach space over K if E is complete
metric arising from norm.

Example 2.2. Show that linear space R" or C" of all n-tupples x = (xy,xp,--- ,X,) of
real or conplex numbers are Banach space w.r.t. norm

n

ol = [ X 2] @

Solution. First, we show that R" or C" are normed linear space w.r.t. norm

(i) ||x]| > O for each x; > 0
(i) x| =0 x=0

| —

FoerH:0<:>[ ;l:]\xﬂ —0e Y [x2=0e |x|=0cx=0foralli <

X = (X],XZ,"' 7xn) =0
1 1 1

2 2 2
Gii) floux]| = | Xy Jou?] " = |2y o] = Jaul [ Ty Il ] = el ]
(iv) Sub-additivity

1=
=
+
=
R
[SlE

e+l =

I
_

AN
| —
M-
?
I—I
r—|
*5_
I_l
C
z.
=
[0)°]
=
=
o
<
2]
:
-
C/J
(el
=
(@]
0
o
1)
£
=
<
d.
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Further, we shal prove that R" or C" are complete. For this let < x, > be Cauchy se-
quence in R" or C".

These spaces are metric space w.r.t. metric d defined by d(x,y) = ||x —y||. Since each
Xy is n-tupple of real (or complex) numbers and hense x,, = (x,,1,Xn2, -+ ,Xun), By defin-
tion of Cauchy sequence, given €> 0, J positive interger ng such that for all ,m > ng

n
2 _ 2 2 _ 2
= |l —xl <€= m—xl> <€ = Y |lxm—xil” <€
i=1
=[x — x> <€ foralli. = |x,,; — x| <€ for alli.
This shows that < x,,; > is Cauchy sequence for all i. Hense R" or C" is complete and
therefore Banach Spaces.

Example 2.3. Show that /; is Banach Space.

Solution: Here we prove completeness of /. For this let < x,, > be a Cauchy sequence
in [;;. We write
Xm = (A, x5, ..., X0

Let €> 0 be given, since < x,, > is a Cauchy sequence, there exists a 4 ve integer my
such that

||Xm —x1]|p <€ whenever m,l > my

= me—le‘Z <eP
! I

= Y 0 <er (1)
=1

= |xl(m)_xl)|]7 <Ep7 l_1727 ,n

= ™ —x

This shows that the sequence < x}" > _, is a Cauchy sequence in C or R and complete-
ness of R and C implies that each of these sequence converges to a point say z in Cor R
such tha
limx\™ =z (i=1,2,...,n) 3)
Mm—>oo
We will now show that the Cauchy sequence < x,, > converges to the point z = (z1,x2,...,2,) €
- To prove this let / — o in[I} they by [3|for m > mo, we have

n
Y "™ —zil? <€P= o —2]lh <€”
i=1
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= xm—z|p <€

Consequently the Cauchy sequence < x,, > converges to z € [;;. Hence [}, is complete

and therefore it is a Banach space.

Example 2.4. Let p be a real number such that 1, denote the space of all sequences

X =< X1,X2, ", X, > of scalars § such that Y| [x,|? < oo.

Show that 1, is a Banach space under the norm

1 1
Ixllp = [} [l P17
i=1

Solution: [N;]: Since each "7, |x,|” > 0= we have ||x||, > 0and ||x||, =

SlxpP =0 Yn=1,...,00

Sx, =0 Vn=1,...,00
EX=<X1,X2,.,Xp,... >=0

[N2] is eyl < [lxllp + Iyl

oo

= Ix+yl, =1 len+yn|p (1<p< )

> 1 > 1
<Y [xal?17 + 1Y [yal?]7
n=1 n=1

[Minkowski’s inequality for sequence]

(N3] o, = (£, o)

Thus /,, is a normed linear space.

To prove that [, is complete.

1
0 S bal’l? =
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Let < x, >;°_; be a Cauchy sequence in [,. Since each x,, is itself a sequence of scalars.
We shall denote an element x,, by

X =< xgm),xgm),...,x,(,m),... >

Where Y, \xﬁlm)ll’ < 0. Since each < x, > is a cauchy sequence in [, given €>
0, da + ve integer mq such that n,m > m.

= [|xn — x| p <€ 4)
In particular

n>my = ||x, —mpl|, <€ (5)
Thus if n > my, then

1%l p = 11 = Xm0 + Xmoll p < 10 = Xmoll p + l[moll p <€ +[xmoll p

If € +||x,||p = A so that A >,0
Then

> 1
(Y [rlPlr <A
n=1

x|, <A for A > my. (6)

As in the above examples, from [ it can be shown that for fixed i, the sequence <
xi! >»_, is a Cauchy sequence in C or R and consequently it must converge to a number
say z;.

Let z =< z1,22,"** ,2, > We assert that z € 1, and the cauchy sequence < x, > con-
verges to z € 1, and we first show that z € 1, from|§] we have for n > my

bealls < AP = Y x| < AP
i=1

Hence for any +ve integer L, we have

5 )
Y 5P (n>mo) (7
i=1
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(n)

But fori=1,...,L, we have x; " — z; as n — oo. Hence letting n — o. in we obtain

L

Y luP<Ar (L=1.2,..)
i=1

= Z |zi]P < AP < oo
i=1

This proves that z =<z, >;"_|€ [,
Finally from ] for n,m > myq

Pn — x| <€P= ¥ 3 — 2P <
i=1

Hence for any +ve integer L,we have

S ) (m)

Z |xin —xim P <€l (n,m>my)]

i=1
Letting m — oo and using lim;,,_,c xl(m) = z; we obtain

SIRG
= Y |5 —zlP <€ forall n > my
i=1

Example 2.5. (The space ;). Let [, denote the linear space of all sequences x =<
X1,Xx2,... > of all scalars such that

Z |xn|2 <o
n=1

1
Show that [, is a Banach space under the norm [jx|| = [, [x,]?] 7.

Solution: This space is called Hilbert coordinate space or sequence space. This is a
particular case of the previous example with p = 2. If the scalars are real, then [, is
known as infinite dimensional Euclidean space and is denoted by R™. If the scalars are
complex, then /»is called infinite dimensional unitary space denoted by C™.

Example 2.6. Lex X be non-zero normed linear space. Prove that X is Banach space
iff {x € X : ||x|| = 1} is complete. Since
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Solution. Let X be Banach space and M = {x € X : ||x|| = 1}. Since X is Banach
space = X is complete as a metric space. Let < x;,, > be Cauchy sequence in M, then
||lxn]] = 1 for all n. Since < x, > is a Cauchy sequence in M C X = <x,>isa
Cauchy sequence in X, but X is complete.

= dx € X such that x;,, — x.

Again since, ||.|| is continuous function, Therefore, we have
I |l = ||x]| or ||x|| = lim ||x,|| = 1 or ||x|| = 1. [By definition of M]
n—oo

It follows that x € M. Thus Cauchy sequnce < x;,, > of points in M converges to a point
x € M. Hence M is complete.

Converse. Let M is complete, we shall prove that X is Banach space. Since X is
normed linear space, so it only require to prove that X is complete. For this let < x,, >
be a Cauchy sequence in X, then by definition

lxn —xm|| — Oasm,n — 0. (8)

But, By[§|= < |lxp —xm|| — O.
Which shows that < ||x,|| > is a Cauchy sequence in R, being complete. Hence 3ot € R
such that

lxn]] — aasn — . )
Write

Vp = foralln € N. (10)
IIXnH

We shall now show that <y, > is a Cauchy sequence, for this

Ion =31l = || oy = | = e+ T~ o~ T
_ o=l , Il = )
= Tl ool T
[ T
= Tl el
or
3 — | < 2,16 =)

[
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Letting the limit as n,m — o, we have

lyn = ymll < 0but ||y, — ym| <0

= |lyn —yml =0 as n,m — oo.

= <y, > is Cauchy sequence in X. Since, from[10} ||y,|| = 1 for all n and y, € M.
Which Finally, implies that <y, > is Cauchy sequence in M, which is being complete.
Hense Jy € M such that y, — yasn— eo = 22 — yasn — eo. orbylﬂ:> 1im,,_yeo X, =
ay. Butasy e M, o a scalar, and M is linear space = ay € M C X = ay € X. therefore
a Cauchy sequence of points in X converges to a point in X. Thus X is complete, so a

Banach Space.

Example 2.7. Let p be a positive real number. A measurable function f defined on
[0,1] is said to belong to the space LP[0, 1] if [ | f]7 < co.

Thus L! consists precisely of the L ebesgue integrable functions on [0, 1]. Since
|f+gl? <2P(|f|P + |g|P), it follows that f+ g € L if f,g € LP. Also af is in L7,
therefore o f + Bg € L whenever f,g € LP. For a function f in L”, we define

1 1
I71=171 = (f 1£17)7

we observe that || f|| = 0 < f = 0 almost everywhere. Thus one of the requirement
for a space to be a normed linear space is not satisfied. To overcome this difficulty,
we consider two measurable functions to be equivalent if they are equal almost every
where. If we do not distinguish between equivalent functions, then L” space shall
become a normed linear space. Thus we should say that the elements of L?” are not
functions but rather equivalence classes of functions. If & is a constant, then || f|| =
||.||f]|- Thus to show that the linear space L” is normed linear space, it is sufficient to
show that ||/ +g|| < ||fIl+ ||g|l- To show this again we establish two inequalities:

Holder’s Inequality.

Theorem 2.8. If p and g are non-negative extended real numbers such that % +1-1

q
and if f € LP, and g € LY, then
[ 1521 < 151l

Proof. The case p = 1 and g = 1 is straight forward. We assume therefore that 1 < p <
oo and consequently 1 < g < oo. Let us first suppose that

|l fll, = llgllg = 1. Using the inequality
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oa*B'* < Ao+ (1—2A)A, a and B are non-negative reals.

Taking o = | f(¢)|7, B = |g(¢)|?
=L a1t
D P 4

Y

we obtain
1 1
IﬂﬂgUHSEVVH”+?ﬂﬂW

Now integration yields

Jissi= s fior = [le=1

If | f|| =0 or || f|| = 0, then the inequality to be established is trivial. Let f and g be any

elements of L and L? with || || € 0. Then ﬁ and ”i%” both have norm 1. Substituting
Hip q

them in (1) gives

.y 71 lel
e [l = [ i <1
7T TeT, 1715 Tell

and hence
178 < 171Nl

Minkowski’s Inequality.

Theorem 2.9. If f and g are in L”, then so is f + g and

17 +&llp < A1l + gl

Proof. Since |f+g|? <2P(|f|” + |g|P), therefore f,g € LP implies f = g € L”, the
inequality is clear when p = 1, so we assume that p > 1. Let ¢ > 1 such that %4— é =1.
Then (p —1)g = p. Also

[1r+ar < [1f+glif+gprt!
= [ir+elr < [irlir+elr+ [lghlf el (i
We note that

Jur+glr 9= [1r+6l7 1= [Ir+gl <o (since pg—q=p)



28

Therefore | f+g|?~! € L4. Since f, g € L” and we have just shown that | f +g|P~! € L9,
Holder’s inequality (proved above) implies that |f|.|f 4+ g|?~! and |g|.|f + |7~ are in
L' and

J1910F +87 <UL+t
J1gllr +¢7 < gl i+ 8l

But, by definition of norm,

107+ )Pl ={ [ 1+ g Doy e

= ([ U+l
— (I +gllp}a
= {If +8ll,}""
Thus
J1910F +800 < £l (1F + 1) (12
[ 18l +817Y < gl {117+ gl 17/ (13

Combining [T} [[2]and[13] we have
1 +&l5 < (I 1o+ gl {ILf + gl 37/

Dividing throughout by {||f + g|, },?/9 we obtain

1+ &llp < A1l + gl

which completes the proof of Minkowski’s inequality.

We have proved therefore that L” space is a normed linear space. Now we prove
that it is a complete space. We require some results.
Definition 2.10. A series ), f,, in a normed linear space is said to be summable to sum
S if S is in the space and the sequence of partial sums of the series converges to S, that
is,

Is— 3 fill =0
i=1

In such a case, we write SY.°° | f;. The series ). f; is said to be absolutely summable if

Lz [[fn] <e.
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We know that absolute convergence implies convergence in case of series of real
numbers. This is not true in general for series of elements in a normed linear space.
But this implication holds if the space is complete.

Completeness of L” (Riesz-Fisher Theorem).

Theorem 2.11. For 1 < p < oo, [P-spaces are complete. or If f, f2,... form a Cauchy
sequence in L?, that is || f, — fiu||, — 0 as n,m — oo there is an f € LPsuch that

1fn = fllp = O

Proof: To show that the Cauchy sequence < f,, > converges, we construct a subse-
quence of this sequence which converges almost every where on X as follows.
Since < f, > is a Cauchy sequence, then for €= %, Ja+ ve integer n; such that

1
n,mz=>ny = an _meP < 5
Similarly for e= (%)2, we can choose a + ve integer ny > nj such that n,m > ny

1
= an _mep < (5)2

In general having closed ny,...,n; let ng1 > n; be such that

1
o= Fallp < ()"

for all n,m > ny| we assert that the subsequence < f,x >7__; converges almost every-
where to a limit function, f € L,.
From the construction of < f,; > it is evident that

L o1 = furllp < L 5)* = (27 =1 (14)
i=1 i=1 )

8k = |fn1 ’ + |fn2_fn1‘+"'+ ’fnk—O—l _fnk|

For k=1,2,3.... Then < g; > is an increasing sequence of non-negative measurable
functions s. that

lgpllt = llgxlls
= [I{|fu1| + [z + fur| -+ 1 + S HIp)?
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k
< (Ifullp+ X i = fuillp)” - (by Minkowski’s inequality)
i=1

k
< fatllp + Y M fnir = frill )17
i=1

<[llfmllp+1]7 by (1)
<eo = gl <eo

or /|g|"du < oo

Let g = lim;_,., gx. Then by Monotone convergence theorem and the above estimate of
gi , we have

/|g]pdu: 1im/\g£[du<oo
k—yoo

1.€.
/Hfm |+ Z | friv1 — fuil]Pdu < o0
i=1

Hence g € L.
It follows the series

Z |fni+1 (x) - fni(x> |
i=1
converges a. e and consequently the series
fni(x) Z(an—l (x) o fm(x))
i=1

Converges a.e. The k' partial sum of this series is fn;.1(4). and so the sequence
< fr(x) >7 .

Converges to a some non-negative measurable function f(x) for all x € A where A
is measurable and u(A) = 0. Define f(x) = 0 for all x € A. It is easy to see that f is
measurable and complex valued on X.

We will now show that f € L,. Let €> 0 be given. Choose [ so large that

s,t zm = | fs = fillp <€

Then for k > 1 and m > n|,we have

| fin — fukllp <€ = (/\fm—fnk|pdu)117 <e
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:>/|fm—fnk|”du <e? (1) (1)
By Fatou’s Lemma, we have
J17= fulrau= [ lim |~ fulrdu<e” by @)

Thus for each m > n, the function f — f, isin L, and so f = (f — fi) + f is also in
L, and lim;, e || f — fn||, = 0. Thus f L, is the limit of the sequence < fn > .
Hence L, is complete.

Example 2.12. Consider the linear space of all n-tuples x = (xy,...,x,) of scalars and
define the norm by
|X|oo = max{|xi], |x2],..., |xi|} [or supl|xi]

This space is denoted by 2.
Show that (I, ||x||e=) is a Banach space. (Also called the space of bounded se-
quence)

Solution. We first prove that /" is a normed linear space

[N] Since each |x,| > 0= ||x|l« >0
and ||x||co = 0 < max{|x1], |x2],...,|xi|}

& x| =0,]x] =0,...|x,| =0

E X1y Xy =0
& (X1y..0,x) =0&x=0

[N] Let x = (x1,...,x,) and y = (y1,...,Yn)
Then [|x +y|[eo = max{|x; +y1], [x2 +y2[,- -, X0+ Yl }-

< max{|xt|+ [y1], |x2| + [y2|, [xn| + [ynl}

< max{lxl‘a \x2|,...,\xn|}—|—max{|y1], |y2|7"'7|yn’}
= [|x[[oo + [[¥l|eo-

[N>] if « is any scalar, then
||ax||o = max{|ox |, |atxz],. .., |ax,|}

= || max{|x1]|, |[x2], ..., |xn]|
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= |af]|x]|oo.
Hence [IZ is a normed linear space. We now show that it is a complete space.

Let < x;, >, _, be any cauchy sequence in [[. Since each x,, =< x|', x5, ..., x;' >.

Let €> 0 be given, 3 a +ve integer mq that [,m > my

= || — x| <€

= max{|x]' —xi|, g — ..., [0y x| <€

= ]xgm) —xgl)| <g, i=1,...,n.

This shows that for fixed i, < xl(m) >>_, is a Cauchy sequence of real (or complex)

numbers. Since C or R is complete, it must converge to some z; € C or R. Thus the
Cauchy sequence < x,,, > converges to z—(21,22,-,2n)-

Rest of the proof is simple. Hence [ is a Banach space.

Show that /., is a Banach space.

Example 2.13. Let C(X) denote the linear space of all bounded continuous scalar val-
ued functions defined on a topological space X. Show that C(X) is a Banach space
under the norm

/1l = SUP){!f(X)\,xéx}

feCx
Solution: Vector addition and scalar multiplication are defined by

(f +8)x=f(x) +8(x), (af)x = af(x)

C(X) is linear space under these operations. We now show that C(X) is a normed linear
space.

[Ni]  Since |f(x)| >0V x € X, we have
11/ =0
and [|f]| = 0 < sup{|f(x)|,x € X} =0
& |f(x)) =0 VYxeX

< f(x)=0 VxeX

& =0 (zero function).
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N2 [f +gll = sup{|(f +&)():x € X}
— sup{|(x) + g(x) :x € X}

< sup{[f(x)| +[g(x)|;x € X}
< sup{[f(x)[:x € X} +sup{[g(x)|x € X}
= [I71+ gl

[Ns] - [lacf|| = supf[(af)(x)|;x €}

= sup{|eef(x)[;x €}

= sup{|ec||f(x)[;x €}
= |af.sup{|f(x)|:x €}
= [afllA1-
Hence C(X) is a normed linear space. Finally we prove that C(X) is complete as a

metric space. Let < f,, > be any Cauchy sequence inC(X). Then for a given €> 0,3
positive integer mg such that

m,n > mo = || fm — ful <€
= sup{|(fm — fr)(x)[;x € X} <€
= sup{|fin(x) — fn(x)|;x € X} <€
= |fin(x) — fn(x)| <€ Vx € X.

But this is the Cauchy’s condition for uniform convergence of the sequence of bounded
continuous scalar valued functions. Hence the sequence < f,, > must converge to a
bounded continuous function on X. It follows that C(X) is complete and hence it is a
Banach space.

Consider linear spaces R and C of real numbers and complex numbers respectively. We
introduce norm of a number X in R or C by defining ||x|| = |x|. Under this norm, both R
and C are Banach spaces.

Consider the linear spaces R"” and CnC" of all n tuples x = (x1,xp,...,x,) of real and
complex numbers. These spaces can be made into normed linear spaces by introducing
the norm defined by ||x|| = (¥, ]Xi\2)%

Exercise For Practice

Which of Following are Banach Spaces ?.
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Question 2.14. The linear space P|a,b] with the norm given by

[[Xlloo = Sup-sejap) ¥ ()]

where Pla, b] be set of all polynomials with real cofficients defined on [a, b].

Question 2.15. The real linear space C[—1, 1] with the norm given by

ol = [ 1o)ar

where integral is taken in the sense of Riemann.
Question 2.16. The space C of all convergent sequence x =< &; > with the norm given
by

X[l = sup |Gl

1<i<oo

where integral is taken in the sense of Riemann.

Question 2.17. The space C of all sequences x =< &; > of bounded partial sums with
the norm given by

¥l = sup ) &

Sn<eo =]
where integral is taken in the sense of Riemann.

Question 2.18. The linear space Cla, b] with the norm given by

b 1
Jallp = [ [ tovar] 1 <<es
a

Answers. Q. 2.0.14. No Q.2.0.15.No. Q.2.0.16. Yes Q.2.0.17. Yes Q.
2.0.18. No.
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CHAPTER 3

Space of Linear Tranformations

Our aim is to study a class of spaces which are endowed with both a topological and
algebraic structure. This combination of topology and algebraic structures opens up the
possibility of studying linear transformation of one such space into another. First we
give some basic concepts and definitions.

Definition 3.1. Let N and N’ be linear spaces with the same system of scalars. A
mapping T from L into L’ is called a linear transformation if

T(x+y)=T(x)+T(y)

T(ax) = aT(x)
or equivalently T'(ox+ By) = aT (x) + BT (y). Also T(0) = T(0.0) =0 and T (—x) =
—T(x).
A linear transformation of one linear space into another is a homomorphism of first
space into the second if is a mapping which preserves the linear operations.

Definition 3.2. Let N and N be normed linear spaces with the same scalars and let T
be a linear transformation of N into N’. We say that T is continuous, mean that it is
continuous as a mapping of the metric space N into the metric space N'. [since every
normed space is a metric space d(x,y) = ||x —y|| ]. But by a result [Let X and Y be
metric spaces and f : X — Y. Then f is continuous < x, — x = f(x,) — f(x).] This
implies that x, — xin N = T(x,) = T(x) in N'.

In the next theorem, we convert the requirement of continuity into several more
useful equivalent forms and show that the set of all continuous linear transformations
of N into N’ can itself be made into a normed linear space in a natural way.

Theorem 3.3. Let N and N’ be normed linear spaces and T a linear transformation of
N into N'. Then the following conditions on T are equivalent to one another.

(1) T is continuous
(ii) T is continuous at the origin, in the sense that x, — 0= T (x,) — 0.
(iii) 3 a real number K > 0 with the property that |7 (x)|| < K||x|| for every x € N.
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(iv) If S = {x: ||x]| < 1} is the closed unit sphere in N, then the image T'(S) is a
bounded set in N'.

Proof. (i)=-(ii) If T is continuous, then by the property of linear transformation we
have 7(0) = 0 and it is certainly continuous at the origin. For if T is continuous and
{x,} is a sequence of points in N such that x,, — 0, then by the continuity of T, we have

xp — 0= T(x,) = T(0)
=T(x,) =0 [since T'(0) = 0]

Conversely if T is continuous at the origin and {x,} is a sequence such that x,, — x,
then

Xp—>x=>x,—x—0
= T(x,—x) — T(0)=0 [since T is continuous a the origin]
= T(x,)—T(x)—0

Hence T is continuous.

(i1)=-(iii) Suppose that T is continuous at the origin. We shall show that a real
number K > 0 such that |7 (x)|| < K||x|| for every x € N.

We shall prove this result by contradiction. So suppose 3 no such K. Therefore for
each +ve integer n, we can find a vector x,. that

1T (xn )|l > ||
Which is equivalent to
T (x X
1Tl ) o 1T (=) > 1 (1)
n|x| x|
we put y, = n\l)zln\l' Then ||y,|| = nl\)i?nll = ,ll —0asn— oo,

If follows from it that y,, — 0. But from (1) T(ﬁ) — 0. So T is not continuous
at the origin, which is contradiction to our assumption.
Conversely, suppose that 3 a real number K > 0 with the property that

1T ()] < K[|
for every x € N. If {x,} is a sequence converging to zero, then

Xn = 0= |jx,]| = ]|0]| =0
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Therefore ||T (x,)|| < K||x,|| — 0. Hence T'(x,,) — 0 which proves that T is continuous
at the origin.

(iii)=-(iv) Suppose first that 3 a real number K > 0 with the property that |7 (x)|| <
K||x|| for every K||x|| If § = {x : ||x|| < 1} is the closed unit sphere in N, then for all x,
we have

|7 (x)[] < K[lx]|
= IT(x)[| <K, Vx€S.
Hence T'(S) is a bounded set in N'.
Conversely, suppose that S = {x : ||x|| < 1}is the closed unit sphere in N and T'(S) is

bounded in N'. Then
|17 (x)|| <K,Vx€ES.

If x =0, then T(x) = T(0) = 0 and therefore in this case we have clearly ||T(x)| <
K|lx][. 1f x # 0, then 7 € SC.- ||yl = 1) and therefore ||7' ()l < K

i, 7)) < Kl

Space of Bounded Linear Transformation

Definition 3.4. A linear transformation 7 is said to be bounded if 3 a non-negative real
number K such that
1Tl < Klx[|, v x

K is called bound for T'.

Remark. Thus according to the above theorem T is continuous iff it is bounded. From
condition (4) of our theorem, we can define the norm of a continuous linear transfor-
mation as follows:

Definition 3.5. Let T be a continuous linear transformation, then
17| = sup{[lxls lxl] < 1}
is called the norm of 7. Obviously norm of T is the smallest M for which ||7 (x)|| <

M||x|| holds for every T i.e. ||T|| = inf{M;||T (x)|| < M||x||}.

Theorem 3.6. Let N and N be normed linear spaces and let T be a linear transformation
of N into N’. Then the T—! exists and is continuous on its domain of definition iff 3
exists a constant m > 0. that

mlx[| < IT(x)|| VxeN. (1)
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Proof. Let (1) hold. To show that 7! exists and is continuous Now 7! exists iff T is
one-one. Let x; xp € N. Then

Tx1)=T(x)=T(x)—T(x2)=0
=T(x1—x)=0
= T|lx; —x2|| =0
=x1—x2=0 by (1)

= X1 =X

Hence T is one-one and so T~ ! exists. Therefore to each y in the domain of 7~!, Ja x
in N such that

T(x)=y=x=T""'(y) 2)
Hence (1) is equivalent to

_ _ 1
[T < Il = 177 ) < Il

= T~ !is bounded

= T~ ! is continuous (by the above theorem).

Conversely, let T~ ! exists and be continuous on its domain T(N). Let x € N.
Since, there exists y € T'(N) such that

T ') =xeTk =y (3)

Again since 7! is continuous, it is bounded so that there exists a +ve constant K, such
that

1Tyl < Kyl = [Ixll < KT ()l by (3)

1
= mlx|| < ||T(x)|| where m = i 0

Theorem 3.7. Let N and N’ be normed linear spaces and let T be a bounded linear
transformation of N into N’. Let

a=sup{||T(x)[;x €N, x| = 1}

b= sup{%;x €N;x#0}
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c=inf{K;K > 0;||T (x)|| < K||x||,V x € N}.

Then
IT||=a=b=c

and
1T < T[],V x €N.

Proof. By definition of norm

1T = sup{ (|7 (x)[[:x € N, [|x]| < 1}

By definition of ¢, we have
[T < clixl],vx €N

and if ||x|| < 1, then
IT(x)|| <c,VxeN

and
sup{[|T(x)[|;x € N, []x]| <1} < ¢

ie. |T| <c.
Also by definition of b and c, it is clear that ¢ < b.
Again if x # 0, then

17 (x)]]

]

= HT(M)H-

And ”j—H has norm 1. Hence we conclude from the definitions of » and a that b < a. But

it is evident that

a=sup{[|[T(x)|;x €N, x| = 1} < sup{[|T (x)[l;x € N, [|x]| < 1}

= a<|T].

Thus we have shown that

IT| <ec<b<a<|T|
=|T|=a=b=c.

Finally, definition of b shows that

@l Tl L
I < SN E 0 =b=IT]

< sup{
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=TI <7l

Remark. Now we shall denote the set of all continuous (or bounded) linear transfor-
mation of N into N’ by B(N,N’) [where letter B stands for boundedness].

Theorem 3.8. If N and N’ are normed linear spaces, then the set B(N,N’) of all con-
tinuous linear transformation of N into N’ is itself a normed linear space with respect
to the pointwise linear operations and the norm defined by

17| = sup{[|T (x)

x| <1}

Further if N is a Banach space, then B(N,N’) is also a Banach space.

Proof. Let B(N,N') be the set of bounded linear transformation on N into N’. Let
T, 1T, € B(N,N/). Define 71 + 7> by

(i + T2)(x) = Ti(x) + T1 (x)

and oT by
(aT)(x)=aT(x), VxeN.

It can seen that under these operations of addition and scalar multiplication, B(N,N')is
a vector space since we know that the set S of all linear transformation from a linear
space into another linear space is itself a linear space w.r.t. to the pointwise linear
operations. Therefore in order to prove that B(N,N’) is a linear space, it is sufficient
to show that B(N,N’) is a subspace of S. Let T}, T» € B(N,N’). Then T; and T are
bounded, so 3 real numbers K; > 0 and K> > 0 such that

171 ()| < Kyllx]|
and

|T2(x) || < Kallx||
forall x € N.

If a, B are any two scalars, then

I(aTi +BT2)(x)|| = [T (x) + (BT2) (%) |
= le[|Ti(x)[[ + B T2 (x) ]
< (loe|Ky + |BIK2) x|
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Thus aT; + BT, is bounded and so
aT,+ BT, € B(N,N')

This proves that B(N,N') is a linear subspace of S.
Now we prove that B(N,N’) is a normed linear space with respect to the norm
defined by
171 = sup{ T (o) [ [l¢l| < 1]
which is clearly non-negative. We have

M) T[] = 0 < sup{ |7 (x)[[; [l <1} =0

& sup{%;x #0}=0

I

ST =0T =0
(iD) [[aT || = sup{|[(aT)(x)|; [lx]| < 1}

=0VxeNx#0

= sup{[|a.T(x)|s Ix] < 1}

= sup{|e|[|T () [|; []x] < 1}
= |e]sup{[|T ()[[; [lx]| < 1}

(iii) |77 + T2 = sup{|[(T1 + T2)(x)

)

x| <1}

= sup{|[T1 (x) + T2(x); [|x[| < 1}

< sup{ |7y () [|; [lxll < 1} +sup{[[T2(0) [ls [lx]] < 1}
= T3]l + I 72l
Hence B(N,N’) is normed linear space. It remains to prove that if N’ is a Banach
space, then B(N,N’) is also a Banach space. For if; suppose N’ is a Banach space.

Then N’ is complete. It sufficiency to show that is B(N,N’) complete. Let {7, } be an
arbitrary Cauchy sequence in B(N,N’), then for any x € N,

1T (x) = T () || = [[(Tn = T) (%)
ST =Tallllxll Co T < T {1x]1) (D)
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This shows that {7, } is a cauchy sequence in N’. Since N’ is complete, 3 T'(x) in N’
such that 7, (x) — T,,, Vx. i.e.T(x) = lim,_se0 Tpy(x).
Now defines a mapping 7 from N to N ", It is obvious that T is linear. For
T(x+y)= lim T,(x+y)
n—yoo
= lim 7, (x) + lim 7, (y)
=T(x)+T(y)

and

T (ox) = lim T, (o)

n—oo

= lim{aT,(x)}

n—soo

Now {T,} being a Cauchy sequence, lim,,_,{||7,—T}n||} = 0 and since
[Tl = Tl DI < 1T = T

it follows that
(I Tall = 1Tnl[)] = O

lim |
m,n—oo
Therefore {7, } is convergent and hence bounded i.e. 3 a real no. K such that
ITW| <K, n=1,2,...
and therefore
1T < 1 Tallllxll < Klixl], ¥ m
Thus
IT@I = lim (7)) < K]x]

= T is bounded.
Hence T € B(N,N'). If we prove that 7, — T. Then we have that B(N,N’) is complete.
For let €> 0, choose n( so that

S
T — Tl < > if m,n > ny.

Then c
| T (x) — T,(x) || < EHXH for m,n > ng, x € N.
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Letting n — oo, we get
€
| T (x) — T (x) || < EHXH for m,n >np, x €N

since
T(x)= lim T,(x).

m,n—oo

This implies that for m > ng and ||x|| < 1, we have

1T (x) = T ()| = [IT (x) = Ton(x) + Ton(x) = =T (x)
<NT) = Ta@ + 11T (x) = Tu(3)

< T (x) = Tl [1X[| + | Ton — T [ 1] [ x| < 1]
<S48 ¢
2 2

This shows that
|7 = Tl = sup{||T (x) — Tu(x)||; |x]| < 1} <€

Hence T,, — T. Thus we have proved that B(N,N’) is a complete normed linear space.

Note. By the definition of bounded linear transformation, it is clear that a continuous
linear transformation is bounded linear transformation and conversely. Also if N and
N’ are normed linear spaces, the space L(N,N’) or B(N,N’) is also called space of all
continuous linear transformation. In notation if N = N’, the space is also denoted as
B(N).

Definition 3.9. A continuous linear transformation of a normed linear space into itself
is called operator on N. The normed linear space consisting of all linear operators on N
is denoted by B(N). The above theorem asserts that if N is a Banach space then B(N)
is also a Banach Space.

Definition 3.10. An algebra is a linear space whose vectors can be multiplied in such a
way that

(i) x(yz) = (xy)z
(i) x(y+z) =xy+yzand (x+y)z=xz+yz
(iii) a(xy) = (ox)y = x(ay) for all scalars a.

Thus an algebra is a linear space that is also a ring in which (iii) holds.
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If the linear operators 77 and 73 are multiplied in accordance with the formula
(') (x) =T1(Tr(x)), VxeN
Then B(N) is a algebra in which multiplication is related to the norm by
ITT' || < ||IT|IT"]
This relation is proved by the following computation

ITT'|| = sup{|[(TT") (x)||: [lx]| < 1}
= sup{[|T(T"(x))|: [lx]| <1
< sup{||T|[[|7"(x)ll: lx[| < 1}
= |IT||{sup |7’ (x)[J: Il < 1}
= |ITIIIT"] (1)

’

Since we know that addition and scalar multiplication are jointly continuous in normed
linear space, they are also jointly continuous in B(N). Also multiplication is continu-
ous, since if

T, — T inB(N) and T, — T in B(N).

Then
T,.T, - TT'.

Since
LT, = TT'|| < | TNT, =T+ | T =TI T']|-

But {7}, } being convergent sequence in B(N ), it must be bounded so M such that
|55, —TT'| <M||T, = T'|| +||T"||.| T, — T|| = 0 as n — .

We also remark that when N # {0} then the identity transformation I is an identity for
the algebra B(N). In this case we clearly have

1]} =1

for
17| = sup{[[Z(x)[|; [|x[| = 1} = sup{||x[|; [|x]| = 1} = 1.
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Definition 3.11. Let N and N’ be normed linear spaces. A one to one linear transfor-
mation 7 of N into N’ such that || T'(x)|| = ||x|| for every x in N called isometric isomor-
phism. N is said to be isometrically isomorphic to N’ if an isometric isomorphism of N
onto N'.

Theorem 3.12. If M is a closed linear subspace of a normed linear space N and if
T :N — N/M defined by T (x) = x+ M. Show that T is continuous linear transformation
for which ||T|| < 1.

Proof. Since M is closed, N/M is a normed linear space [since every closed subspace
of normed space is normed] with the norm of a coset x+ M in N/M defined by

||x+M|| = inf{||x+m|;m e M}
T(x1+x)=x1+x2+M

=x1+M+x+M [definition of N/M]
=T (x1)+T(x2)

T(Ax) =Ax+M=A(x+M)=AT.
= T is linear.

ITx|| =[x+ M| = inf{||x+m

< inf{||x|| + ||m]||;m € M}
<inf||x|| + inf||m||;m € M
= ||x|| + 0.

sme M}

[since M is subspace of N, 0 is the element of M which has smallest norm namely zero]
Then

ITx|[ < [lx] YneN

= T is bounded
Since

o 17
P

<12 |74 < o] <1
b T

<1 <|xf <1

)

= sup{||7 (x)
x#£0

=[xl <1
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Theorem 6. Let £ and F be two normed linear spaces. Then they are topologically
isomorphic iff 3 m, M and a linear mapping 7 : E — F, which is one-one and onto such
that

ml|x]| < |Tx[| < Mlx]| VxeE

Proof. Let E and F be topological isomorphic, then by definition 3 linear mapping
T : E — F such that T is continuous, bijective and 7~! exists and is also continuous.
Then by using theorem on continuous of linear transformation, then 3 M such that

| Tx|| <M|x|| Vx€E
Also by the last result, 3 m > 0 such that
m||x|| < [|Tx|| < M|x]|.

Since T~ ! exists and is continuous Then we have linear one-one onto mapping such
that 3 mg, M > 0 such that

mllx|[ < ||Txl| <Mlixl|, VxecE
conversely if 37 : E — F such that T is one-one onto and Jm, M such that
mlx|| < |7 ()| < Mllxl[, VxecE.

Since
m||T (x)|| < M||x]|.

Hence T is bounded.
By the theorem on continuity (or bounded) = T is continuous.
Now from m||x|| < ||T(x)||, T is 1— 1 and onto exists
= T~ is continuous. Hence T is bijective, continuous and T ! exists and is continuous
[T is open]
= E and F are topologically isomorphic.

Remark. On a finite dimensional space C", or all the norms are equivalent in the sense
that they define same topology up to topologycally isomorphism.
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CHAPTER 4

Conjugate Spaces and Hahn Banach Theorem

This chapter deals primarily (through not exclusively) with the important class of topo-
logical vector spaces, namely, the conjugate spaces. The highlights, from the theoretical
as well as the applied standpoints are the Hahn-Banach theorems with applications and
Riesz-Representation theorem for bounded linear functionals on L?

Definition 4.1. Let £ and F be normed linear spaces. Then E and F are said to be
equivalent normed spaces iff 37 > 0, M,m > 0 such that

ml|x|| < [|Tx[| < M|lx]|, VxeE.

Conjugate of an Operator: Let N be a normed linear space and 7 a continuous linear
operator on N*, Then for any functional the composite mapping (foT) is a continuous
linear functional since

(foT)(ox+By) = f(T(ox+By); x,yeN
= f(o.T(x)+BT(y))
= of(T(x))+BA(T())
= a(foT)(x)+ B (foT)(y)
Moreover since f and T both are continuous, foT is also continuous Hence f € N,.

Define a mapping
T*:N*— N*
by
T*(f) — foT, YV feN".

This mapping is called the conjugate of the operator 7.
Also we note that

(T*(f)(x) = f(T(x)), VxeN.

We assert that 7* is linear, for

(T7)(oef + Bg)(x) = (af +Bg)(Tx)
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T* is also bounded (continuous) and hence

1T} = sup{[(T* NI IAI < 1}
= sup{[T"(f) ()| /]| < Tand [[x[]| <1}
= sup{[A(T)LIfII < Tlxff <1}
< sup{|[ A7 I llcfls {11 < 1, flcl] < 13
<7l (1)

Since N is a normed linear space, for a non-zero vector x in N, there exists a functional
S on N such that

Il =1 and f(T(x)) =T [ [If] = Tand f(x) = x]|]

17| = sup{ | 7x[]; [lx]} < 1}
< sup{f(T(x));[|x[| < land|[|f]| <1}
= sup{[T"(f) () [[f]| < Tand [x[| < 1}
= sup{[[(T*AI[I[x[l: I /1] < Tand|[lx]| < 1}
< sup{[[(T* NIl [If] < 1}
=177 2)
From (1) and (2), it follows that
17N =Tl 3)
consider the mapping
¢ : B(N) — B(N™)

defined by
o(T)=T", YTEecB(N)

LetTi, T, € B(N) Then

¢(aTi+BT) = (aTi + BT2)"
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But for all f € N* and x € N, we have

[(aTi + BT2)"(f)](x) = fl(aTi + BT2)" (x)]
= flaTi(x) + BT (x)]
= af(Ti(x)) + B f(T2(x)
=a(fT)(x)+B(fT2)(x)
= o(T7°(f))(x) + B(T5 () (x)
= (a[Ty" ()] + BT (/)] (x)
={(aTy" +BT5)(f)}(x)

Therefore, we have

¢(aTi +BT) = (ali + BT)"
=a¢(Ty)+Bo(T),

which shows that in ¢ linear. Also ¢ is one to one, since

¢(Th) = ¢(T2)
=T =T,
=T (f)=T(f) VfeN
= [T7°(N)](x) = I3 (f))(x)
= f(Ti(x)) = f(T2(x))
= T1 — T2 =0
=T =1

Moreover
1o(T)| = IIT*[| =Tl

Hence ¢ is an isometric isomorphism and it also preserves norm. If f € N and x € N,
then

(1 T2)" () (x) = f(T T2) (x)
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T, (Ty (f))(x)
=[(L'TY)(H)(x)

ie.
(ML) =LT

and if I is an identity operator, then

[ (N)(x) = fII" (0)] = f(x)

Thus we have proved the following:

Theorem 4.2. If T is an operator on a normed linear space N, Then its conjugate 7™ is
defined by equation

[T (N))(x) = fIT (%]

is an operator on N and the mapping 7™ is an isometric isomorphism of B(N) into
B(N*) which reverses the product and preserves the identity transformation.

Theorem 4.3. A non empty subset X of a normed linear space N is bounded then f(x)
is a bounded set of numbers for each f in N*.

Proof. Since |f(x)| < f]|||x] it follows that if X is bounded, then f(x) is also bounded
for each f. To prove the converse, we write X = {x;}. We now use natural imbedding
[x = Fy,] to map X to the subset (Fy,) of N**. The assumption that f(x) = {f(x;)} is
bounded for each f implies that {F,,(f)} is bounded for each f. Moreover since N*
is complete. The uniform boundedness theorem shows that {Fy, } is a bounded subset
of N**. Since natural imbedding preserves norms, therefore X is evidently a bounded
subset of N**.

Conjugate Spaces

We know that the spaces R and C are real and complex complete normed linear spaces.
If N is an arbitrary normed linear space, then the set B(N,R) or B(N,C)of all continu-
ous linear transformations of N in R or C is a normed linear space. This space is called
the conjugate space of N and is denoted by N*.
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The elements of N* are called continuous linear functionals or simply functionals.
The norm of a function f € N*is defined as

1F1l = sup{[llf(x)

Since R and C are Banach spaces, it follows that B(N,R) and B(N,C) are also Banach
spaces. Thus N* is also a Banach space.

x| <10}

’

Hahn-Banach Theorem and its applications

Hahn-Banach Theorem is a strong tool for functional analysis. In fact the theory of con-
Jjugate spaces rest on the Hahn-Banach Theorem which asserts that any linear functional
on a linear subspace of a normed linear space can be extended linearly and continuously
to the whole space without increasing its norm.

Theorem 4.4. Let M be a linear subspace of a normed linear space N and let f be a
functional defined on M. Then f can be extended to a functional f; defined on the
whole space N such that

fn(x) = f(x), VxeMand | fol = ||f]

Proof. Let f be a functional defined on a subspace M of a real normed linear space N
and let xo be any vector of N which is not in M. Consider the set {M +tx(} of elements
x+1txog where x € M and ¢ is an arbitrary real number. Then {M +1xp} is obviously a
linear manifold of N Every element of {M +tx¢} is uniquely representable in the form
x +txg, for if O there exists two representations y; = x| +t1xg and y, = xp +txg, we
can suppose that t; = 1, for 0 otherwise x| 4 t1x9 = x2 + tpx9 would imply x; = x, and
the representation will be unique. Then

x1 —x2 = (ta —11)x9

X1 — X2
= Xp =

h—1

But this is impossible since xo € M. and x1,x;. Hence #; = t, and Thus x; = x, which
proves the uniqueness.
For any two elements x1,x; € M, we have

Fx1) = f(x2) = fx1 —x2)
< [f(x1 —x2)|
= [| £ Ge1 +x0) — (x2 +x0) [ }
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= IF 111 +xol + | Gz +x0) I}

so that
F ) = ([ £ [P +xol| < fOe2) + [ £1]]x2 + xo]|

Since x; and x, are arbitrary in M,
We have

sup{f(x) —[|fl[llx+xoll} < inf {f(x) — | f]l[lx+xol[}
XEM xeM

Thus there exists a real no which satisfies the inequality
sup{f (x) — [ FIllx+xol[} < o < inf { £ (x) — [| fIl[}x+xol[} ()
xEM xeM

Now let y be an arbitrary element of {M +tx}. Then y is uniquely expressible in the
form y = x +1xp. We define a function ¢ on {M +1xp} by

¢(y) =f(x)—to Vye{M+txo}

where « is fixed real number satisfying (1). Obviously ¢ coincides with f in M and
the linearity of f implies that ¢ is linear. We shall show that ¢ in bounded and has the
same norm as f(x). We distinguish two cases:

(i) £ > 0. Since 7 € M, the relation (1) yields

¢(y) = flx) —tor
—{f()-a}
<111+ o0}

= [IA 1l +2xo]|
= [I7 1 (2)

(i1) t < 0, In this case (i) yields
X X
) =az =15+
1
= =AYl
i
1
= A1yl

and therefore
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=1{f(7) - o}

1
<t
= IA v 3)

Thus from (2) and (3), it follows that
o) < 7Nyl ¥y e{M+ixo}
Replacing y by —y in (I)), we have
—¢) <Ayl ¥y e{M+ixo}

Therefore ¢ (y) < ||f|l|ly]| Vy € {M+txo} and therefore

1ol <I£1 €

But ¢ being an extension of f from M to {M +1txy} we have

[al=aival (5)
Hence from (4) and (5)
ol =111
Now if the elements of the set N — M are arranged in transfinite sequence xg,x1,X2, ..., X, - . -

we extend the functional successively to the spaces
{M+IXQ} = M, {M() —|—I)C1} = M

and so on since the norm remains the same at each step, continuing the above process,
we arrive at a functional fo which satisfies both the conditions, namely

Jo(x) = f(x) VxeM and |yl = [If]

This completes the proof of the theorem.

Complex Form of Hahn Banach Theorem

When N is complex and f is a complex valued function defined on M, let f; and f, be
the real and imaginary parts of f. Thus for each x € M, we have

fx) = filx) +ifa(x)
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and
AL L < [T (| AAlx]-

we claim that f; and f, are real valued linear functionals.
Let o € R and consider

locfi(x)] leefa ()| < F ()| < (LAl (D

Since f is a linear functional, (1) must equal

filax) =afi(x) and fo(ox) = afa(x)

In a similar fashion, we can show that sums are also preserved.
Now consider

i(f1(x) +ifa(x)) = if (x) = f(ix) = fi(ix) +if2(ix)

Equating real and imaginary parts, we have

fi(ix) =—fa(x) and  fo(ix) = —fi(x)
Thus

f(x) = f2(x) = ifi(x) (2)

Now by the above proved theorem, there exists a function F; defined on the whole space
extending f; such that

[l =/l and Fi(x)=fi(x) VxeM.
We now define
F(x) = Fi(x) — iF (ix) 3)

We now assert that F extends f. To prove this let x € M and consider (3). Since Fj
extends f1, so

Fi(x) — fi(x) and Fi (ix) = — f2(x)
Thus
F(x) = fi(x) +ifa(x) = f(x)
and hence F extends f.
Moreover by (3)

F(ix) = F (ix) — iFy (%)
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we see that
F(ix) = iF (x)

and therefore is a complex linear functional.
Put F (x) = re'®, then
[F ()] = [re]
= r[e']

=r

Thus F (/%) is a purely real quantity which implies that imaginary part of F(e!%x) i.e

Fi(e'%x) must be zero.Thus
F(e%x) = Fi (¢"%x)

and we have
|F(x)| = |Fi (x)]

1%
< 1E |- (1] [
= || A1l [|]l
= || £[]. [l

which gives || F|| > ||x]|-
Moreover F being an extension of f, we have

IF[| = (|1

Hence ||F|| = || f|| and the proof is complete.

Applications of Hahn-Banach Theorem

Theorem 2. If N is a normed linear space and xq is a non-zero vector in N, then

there exists a functional fj in N* such that fy(xo) = ||xo|| and || fo|| = 1. In particular if

x # y(x,y € N), there exists a vector f € N* such that f(x) # f(y).

Proof. Consider the subspace
M = {OCX()}
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consisting of all scalar multiplies of xo and consider the functional f defined on M as
follows :
f:M — F and f(oxg) = a|xol|

Clearly, f is a linear functional with the property

f(x0) = [|xoll
[[xoll[ f (0txo)| = |ex].||xoll
= [Jotxo| (1)

1F1l = sup{[.f(oxo) s [Jaxo < 1|}
= sup{]|axoll; [loex|] < 1}
<1

But if there were a real constant k such that k < 1 and | f(oxg)| < k|joxol| ¥V axg € M.
This will contradict the equality defined by (1). Thus || f|| = 1. We have thus established
that f is a bounded linear functional defined on the subspace M with norm 1. Now by
Hahn-Banach Theorem, the functional f can extended to a functional f in N* such that

folww) = f(x0) and [lfoll = 7] =1

This completes the proof.
In the particular case since x # y, x # 0 and so by the above result, there exists an f € N*
such that

fx=y)=[x—y[#0

= f(x)—f)#0
= f)# 1)
Remark.

(1) This result shows that N* separates the vectors of N.
(2) This result also shows that Hahn-Banach Theorem guarantee that any normed linear
space has rich supply of functionals.

Theorem 4.5. Let M be a closed linear subspace of a normed linear space N and let
¢ be the natural mapping (homomorphism) of N onto N/M defined by ¢ (x) = x+ M.
Show that ¢ is a continuous (or bounded) linear transformation for which

ol < 1.
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Proof. Since M is closed and N/M is a normed linear space with the norm of a
coset x+M in N/M defined by

|x+ M|| = inf{||x+m

;m e M}
¢ is linear: Let x,y be any two elements of N and «, 8 be any scalars. Then

¢(ox+By) = (ax+py) +M

= (ax+M)+ (By+M)
=o(x+M)+B(y+M)
=ag(x)+Bo()
= @ is linear.
¢ is continuous:
19l = [lx+ M|

= inf{||x +m||;m € M}
<|lx+m| VmeM

In particular for m = 0, we have
@) < |lx[| = 1[lx]| VxeN

It follows that ¢ is bounded by the bound 1 and consequently ¢ is continuous.
Further

191l = sup{[|¢x]|;x € N;[|x]| < 1}
< sup{||x[[;x € N: [lx]| < 1}
<1

Thus [|¢]| < 1.

Theorem 4.6. Let M be a closed linear subspace of a normed linear space N and let xq
be a vector not in M, then there exists a functional F in N* such that

F(M)={0} and F(xp)#0



58

Proof. Consider the natural map ¢ : N — N/M defined by ¢(x) = xM. As shown in
the last theorem it is a continuous linear transformation and if m € M, then ¢(m) =
m~+ M = 0, where 0 denotes the zero vector of M in N/M. In other words

¢ (M) = {0}

Also, since xg ¢ M, we have
¢(xo) =xo+M #0.
Hence by theorem 1, there exists a functional f € (N/M)* such that
f(xo+M) = [lxo+M|| #0

We now define f by F(x) = f(¢(x)). Then F is a linear functional on N. With the
desired properties as shown below:
F is linear:

F(ax+ By) = f(¢(ax+Py)) = f(ax+ Ly +M)
fla(x+M)+B(y+M))
af(x+M)+Bfy+M)
af(9(x)+Bf(¢(y)

aF (x)+BF(y)

F is bounded:

[F()] = 17 (9 ()]
< f1llle )l

< Il
< (111l [sincel|¢[| < 1]

Since f is bounded (being a functional). It follows from the above inequality that F is
bounded. Thus F is a functional on N i.e. F € N*. Further if m € M, then

Thus

and
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Theorem 4.7. Let M be a closed linear subspace of a normed linear space N and let
Xp be a vector not in M. If d is the distance from xg to M, show that there exists a
functional f, € N* such that

fo(M) ={0}, folxo)=d and |fol =1.

Proof. Since by definition
d = inf{||xo +m||;m € M}

Since M is closed and xo ¢ M = d > 0.
Now consider the subspace

My = {x+ axp;x € M and o real}

Spanned by M and xq. Since xo ¢ M, the representation of each vector y in My in the
form y = x+ axg is unique. For if there exists two scalars & and o, and vectors x| and
xp in M such that

y = 0qxo-+x;and y = apxo+x3
= (a1 —om)xg =x2—x1
Xy — X
= X0 =
o — 0
= xo € M, which is a contradiction,

since xo ¢ M by our assumption. So each y in My is unique.
Define the map f : My — R by

fy)=oad

where y = x4 axp and d as in hypothesis. Because of the uniqueness of y, the mapping
f is well defined. Also f is linear on M\, and

flxo) = f0+1.x0)=1.d andif me M

then
f(m)=f(m+0.x9) =0d=0

so that

f(M) ={0}.
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We now prove that || ]| = 1.

Since
1Al = sup {%;y € Mo,y + 0}
Iyll=1 1Y
—sup{|f(x+ax0)‘;xeM,oceR}
[|x =+ ouxo|
loud|
= ——— _xeM;ac€R a#0
P ] 708
|d|
=sup{———xeM,a e R,a#0
Pr ] 708
:d[inf{on—zH;ZGM}]’1
1
—d-
d
_ 1

Thus f is a linear functional on My such that

f(M) =A{0}, f(xo) =d and [|f]|=1. (*)

Hence by Hahn Banach Theorem, there exists a functional fy on the whole space N
such that

f)=/foy) Yy € Mpand|/f]|=|fol
Thus from (*)
Jo(M) = {0}, fo(xo) =dand| foll = 1.

Riesz-Representation Theorem for Bounded Linear Functionals on L”

Definition 4.8. A Linear functional on a real vector space T : V — R, which satisfies
the properties
T(x+w)=T(x)+T(w)

T(ox) = oT (x).
Definition 4.9. A linear functional is bounded iff its Range is bounded.

Theorem 4.10. Let F be a bounded linear function on L”, 1 < p < oo. Then there is a
function g in L? such that

F(f) = /fg, f € L, is arbitrary.
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Proof. Let F be a bounded linear functional on L”,1 < p < co. We put

B 1 forO0<x<s
L@ TV0 fors<x<l

and show that
(D(S) = F(Xs(x))
is absolutely continuous For this purpose, let {(s;,#;)} be any finite collection of non-

overlapping subintervals of [0, 1] of total length less than §.
Then

™
n
o
~~
S~
=
|
o
—~~
[}
=
Il
TP
n
o
—~
~
==
|
o
—~~
o5}
==

I

I
_

sgn[®(ti) — D(s:)][(t:) — D(si)]

S8 (20 (5) = 2 (0] [, (%) — 2, (%) }

HM:

< IIFI zsgn 166) — 2 ][0 — 2 O |
= W) 15 sl )= )0 =2 0] P}

If we take 8 = ﬁ, then it follows that total variation P is less than € over any fi-
nite collection of disjoint intervals of total length less than 6. Thus & is absolutely
continuous.

Also we know that a function F is absolutely continuous iff it is indefinite integral.
Therefore an integrable function g such that

Thus

(1) /1 here 1, ifxes
s) = s where ¥, =
X ng x 0, ifxé¢s

Since every step function on [0, 1] is [equal except at a finite number of pts to] to a
suitable linear combination )’ c¢;xs;, we must have

1
F(y) = /O v *)
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For each step function y by the linearity of F' and of the integral.

Let f be any bounded measurable function on [0, 1] [hence Lebesgue integrable].
Then it follows that there is a sequence < y,, > of step functions which converges
almost everywhere to f. Since the sequence < |f — ¥,|P > is uniformly bounded and
tends to zero almost every where by the bounded convergence theorem [Let < fn > be
a sequence of measurable functions defined on a set E os finite measure and suppose
that there is a real number M such that | f,,(x)| <M for all n and all x. If f(x) =lim f,(x)
for each x in E, then [ f =lim [, fn] implies that || f — y,||, — 0. Since F is bounded
and

IF(f) = F(u)| = [F(f —w)| < IF|l[l.f = Wallp
we must have

F(f) =lmF(y,) (**)

Since gy, is always less than |g| times the uniform bound for the sequence < vy, >, we
have

[ re=1im [ e, ()

by the Lebesgue convergence theorem (Let g be integrable over E and let < fn > be a
sequence of measurable functions such that |f,| < g on E and for almost all x in E we

have f(x)lim f;(x)
Then
/E f=1lim /E Ja-
Consequently, we must have
[ Fe=F(p) using (5], (x5, (x55)

for each bounded measurable function f. Since

[EOT<IETIA s

we have g in L, and ||g||, < ||F || by the Lemma which states that “Let g be an integrable
function on [0, 1] and suppose that there is a constant M such that | [ fg| < M||f]|, for
all bounded measurable function f. then g is in L, and ||g||, < M” thus we have only
to show that F(f) = [ fg for each f in L?. Let f be an arbitrary function in L”. Then
there is for each €> 0, a step function y such that || f — y||, <€ . Since is bounded,
we have

Fy) = [ ve
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Hence
()= [ fel=1F0)=Fw)+ [we— [ 18

<IF(-w)l+| [(y=1s

< IFH = wllp +lgllallf = wlp
<[ +lgllg) € -

Since € is an arbitrary number, we must have

F(f)z/fg

Riesz-Representation theorem for bounded linear functional on Cla, b|.

Theorem 4.11. Let F € C*[a,b]. Then there exists a function g € BV [a,b| [bounded
variation] such that for all F € Cla, b].

Fi) = [ 10aso)

Such that
[F]l=V(g)
Where V (g) denotes the total variation of g(z).
Proof. If we view Cla,b], as a subspace of B|a,b|, by Hahn-Banach theorem, there

exists a bounded linear functional Fy defined on all of Ba, b], defined extending F and
such that ||Fy|| = ||F||. Define the characteristic function

() 1 fora<x<s
XxX) =
X 0 fors<x<b

Obviously, for each such ¢,
x:(x) € Bla, D]

with Fj the extension of F, we now define a function g(¢) by

Fo(u(x)) = g(1).
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We partition the interval [a,b] into
a=ty<t <..<ty=b

and consider the sum

Putting
g(ti) —g(ti-1)]
ci=sgn|g(ti) —glti—1)| =
80) =800l = o) (e
we obtain
Y. le() — g(-1)| = lg(0) —gl1-1)]
= Z €i [FO(?C:,-) _FO(Xti_])]
i=1
:FO[Z Ci (%li _xli—l)]
i=1
Therefore
Y I8(ti) —glti- 1)|<||F0H||Z€l Xt — X)) |
i=1
because
[Foll = [|F]l and ||} & O — )l =1
i=1
Hence

\Z\gtl glti-)| < ||F|

that is g(¢) is of bounded variation.
Also it follows that

V(g) <[] (1)

Suppose now that f € C|a,b] and define

n

=Y £ [ (x) — 21, ()]

i=1
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Where the sequence < Z,(t) > converges strongly to f(¢) i.e. ||Z, — f|| — O.
Then the equality

'M=

Fo(Zy) = ) f(t)[g(t) — g(ti1)]

i=1

Implies that
lim F(Z,) =1lim ) f(1)[g(t}) — (ti-1)]
i=1

n—yoo
b
:/ f(t)dg(t

by the definition of Riemann-Stieltjes integral. Since the sequence < Z, () > converges
strongly to f(z) i.e. ||Z,— f|| — 0 and Fp is a bounded (or continuous) linear functional
and therefore cont, this implies that

Fn(Zn) — FO(f)
Therefore .
Ro(f) = [ 0ds(o).

Now since f was an arbitrary continuous function on [a,b] and Fy must agree with F
on Cla,b], we can write

— /bf(t)dg(t) for any f € Cla,b] (2)

From (2), we have

Fl=1 [ 10z

< max |f(1)]. ( )-

)
t€[a,b (
V(g)
=[IflIV(s)

forall f e Cla,b]
Taking sup || f|| < 1, we have

111 =V(g) 3)

From (1) and (3), it follows that
11 =V(g)-
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CHAPTER 5

Second Conjugate Spaces

We know that the conjugate space N* of a normed linear space N is itself a normed
linear space. As R and C are normed linear spaces, we can form the conjugate space
(N*)* of N* and denote this by N** and call it the second conjugate or dual space of N.
The importance of N** lies in the fact that each vector x in N give rise to a functional F;
in N** and that there exists an isometric isomorphism of N into N** called the natural
imbedding of N into N**. The following definition will be required to establish natural
imbedding of N in N**.

Definition 5.1. Let N and N’ be normed linear spaces. Then a one to one linear
transformation T : N — N’ is called isometric isomorphism of N into N’ if | Tx| =
||x|| for every x € N. Further if there exists an, isometric isomorphism of N onto N/,
then N is said to isometrically isomorphic to N'.

We now show that to each vector x € N, there is a functional Fy in N**.

Hence we prove the following result.

Theorem 5.2. Let N be an arbitrary normed linear space. Then for each vector x € N,
the scalar valued function F, defined by

Fx(f):f(x) VfEN*

is a continuous linear functional in N** and the mapping x — F; is an isometric isomor-
phism of N into N**.

Proof. Let N be an arbitrary normed linear space. Let x be a vector in N, consider the
scalar valued function F; defined by

Fx(f):f(x) vaN*

We assert that F, is linear. In fact

F(af+Bg) = (af+Bg)(x)
= af(x)+Bg(x)
= OCFx(f) +BFx(g)
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Now computing the norm of F;, we have

1Fx| = sup{|Fx (/) ].f]| < 1}
= sup{|F(x)[; || < 1}
< sup{[[fIl [Ill: I/ < 1}
< |l

)

Therefore F, is bounded and a continuous linear functional on N*. [F, is called the
functional on N* induced by the vector x and is referred to as induced functional]. Now

define a mapping ¢ : N — N** by
o(x)=F, Vx€eN.
Clearly ¢ is one to one, since

o(x)=9() = F=F
= FE(f)=F(f) VfeN
F(x)=f(y)
= f(x—y)=0=>x—y=0=x=y.

\

Let x,y € N, then for all scalars & and 3,

(P(O‘x+ﬁy) = Fochrﬁy

If f € N* then

Foxipy(f) = f(ox+ By)
=of(x)+Bf(y)
= aF(f)+B(K(f)
= (aF;+ BF)(f)
— oF, +BF,

Thus
Fyripy = QF, + BF,
and hence

= ¢(ox+Py) = aF+BF+ad(x)+Bo(y)
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which shows that ¢ is linear
Moreover by (1)

1@ = NEx] < ] (2)

Also we know that if x is a non-zero vector in N, then there exists a functional f in N*
such that fy(x) = ||x|| and || fo|| = 1. So

X[l = fo(x)
< sup{|fo(x)[; fo € N* and | fol| = 1}
= sup{|Fx(fo)[: | foll = 1}
= =lloM)l 3)
Xl <o ()

Thus from (2) and (3)

@)l = llxl|  VxeN.

= ¢ is an isometry.

It follows therefore that x — F; is an isometric isomorphism of N into N**.

Remark. This isometric isomorphism is called the natural imbedding of N into N**,
for we may regard N as a part’ of N** of without altering any of its structure as a normed
linear space and we write

N CN*™.

Reflexive Spaces

Definition 5.3. A normed linear space N is said to be reflexive if N = N**. The space
lp and [, for 1 < p < eo are reflexive since [, = l; = I =17 =1,

Remark. Every reflexive space is a Banach space since N** is a complete space. But
a Banach space may be non-reflexive space for C[0, 1] is a Banach space but it is not
reflexive.

Example.
Gp)" =1y
) =1e, (@) =4
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Where

n

= {x= (122, m) = (E al?) 7}

1

Z\xz|}

18 = = ()ps Il = gggin\xi!}

Solution. Let L be the linear space of n tuples x = (x1,x2,...,X,).
If {e1,ey,...,e,} is a natural basis of L. Then

X =Xx1€e1+xpe2+...+x,6,
If f is any linear functional on L i.e. A scalar valued linear function

f(x)=(x1e1+...+xnep)
= f(xrer) +...+ (xnen)
:xlf(el)+~--+xnf(en)

where x;’s are scalars.
Put f(e;) =yi1...,f(en) = yn, then (y1,...,y,) is an n-tuples of scalars. Thus

n
X) = iny,- Vx=(x;)] €L.
i=1

is a linear functional since

(xi +x7)yi

-

N
Il
_

flr+x) =

(x,y, —|—x,y,)

I
ngE

~.
—_

I
M:

lyl+ leyl
1 i=1
( )+ ()

Similarly f(ox) =Y oxiyi = aY! | xiyi = o.f(x) V o scalar.
Thus we have a 1 — 1, onto mapping defined by

~.

I
\

y= ()’17)’2;--~»)’n) —F
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where f € L*,y € L. Thus algebraically L' = L.
By defining a suitable norm, say the norm

el = (Y )7
i=1

on L to make it [} space, the L' space of all continuous functionals is equal to (1;’))*,
where the norm of f is given by

| f|l = inf{k;k > 0 and |f(x)| < k|x||} = x € Iy

It is sufficient to show that what norm of y = (y;,y2,...,y,) makes the mapping y < f
an isometric isomorphism.
CaseI: when 1 < p <

Then we can show that (17)* = Ij

Il = (;Iﬁ\)l/” vxel,

If f is continuous linear functional
n
FEl =1} xil
i=1

SZ\MM
1
< (Y )P i)
i=1

i=1

[By using Holder’s inequality]

If)l < (i1 [yil) ) x|

Thus we have .
1A < (X i)
i=1

since
£ < |11 1]

and

If 1l = inf(Y [yil)"/
i=1
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For the other inequality consider the vector x defined by

xi:O if y,-:0

.|g .
and x; = % otherwise.
1

) =Y xyi=Y Ivil?
i i=1
SOl T e
el (2 )t/
_ Yy il
(X lyilpta=)t/e
_ Yy yil?
(X5 il )/

n _l n
= (Y i)' 7 = (X il )4
i=1 i=1

[ aob

since [y 7! = |

n
= £ = (il )4l < [LA) ]
i=1
So for particular choice of x, we have

n
= 1) = 0 i)Y x| < LA ]
i=1
. 1
= (X )Ya<|s]
i=1
Thus necessarily, we have
n
If = H(Z1 i) = fell

Soxell=fel.

Case 2: When p =1, (lg)* =1
Here we have

n
l|lx|| = Z |xi| where x € If.
i=1

It follows that

n n
F@) =Y xivil <Y xivil
i=1 i1
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n
=Yl

< max |yl|2\x,| V= (x1,...xq) €1I}.
I<i<n &=

Since we know

LFOL =< Al

we see that || f|| < max |y;|.
1<i<n

Now max |y;| = |yi| say for some, k,1 <k <n.
I<i<n

Choose an x = (x1,...,x,) such that
=0 ifi£k
‘yk‘ , otherwise
Yk

Note that f = 0, then Jy; # 0 such that y; # 0.
Thus | f(x)| = | X xiyi| = |y"‘ & — |y;| by definition of x.

11l = sup [f(x)] = [yl

[lxl=1

since (0,0,...,y—i‘,...) has norm 1

= [|f] £ max |y;]
1<i<n

So we have (I})* =12.

Case 3: (I1)" =1L.
where ||x|| = max |x;]|
I<i<n

we have f(x) =Y | xyi
n n

) =Y xiyil <Y |xil il
i=1 i=1

n
= max |x;| ) |yi]

1<i<n =1
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Since |f(x)| < [L£1]xl
= A= Y il
i=1

consider the vector x defined by

xi=0ify; =0.
X; = M otherwise.
Vi

we have

i=1 Vi i=1
IR V4GOI B ST V| B ¥ S /]
kel max {lal} max{|‘%‘y}
1< I<i<n
_ l l|yl
N max |yl‘ Z| l|
I<i<n Vi

= W= ; il el < {171l

n
= Y <7l
i=1
Thus

n
I£1= ) Iyil where f €]
i=1
Thus (I7)* =1Z.

Remark. A normed linear space may be complete without being reflexive as we will
see

(Co)* =1
Where Cj {space of all convergent sequences converges to zero } and

(Co)" =11 = L

Thus Cy is not a reflexive. But Cy is complete space.
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Theorem 5.4. C[0, 1] is not regular [reflexive]

Proof. Here C[0, 1] denotes the set of all real continuous functions x=x(t) on [0,1] and

1
il = (| ) Par) /2

Note that C|0, 1] is not a Banach space under this norm.

Assume that C[0, 1] is regular. An arbitrary linear functional F(f) defined on the
space V of all functions of bounded variation. Then must have the form F; (f) = f(x)
for suitably chosen x € C|0, 1]. Recalling the general form of functional C[0, 1], we can
write for an arbitrary F(f),

R =FW) = [ dr) )

where F(t) denotes the function of bounded variation associated with the functional
f(x) € C[0,1]. The functional

Fo(f) = f(to+0) — f(to — 0) (*)

assigns to every function f(¢) of bounded variation, it jump at the point #,.
Obviously, Fy,(f) is additive and

|Fx ()] = |f(t040) — f (o — O)]
1

< var(f) =|f]
0

implies the boundedness of Fy,(f) and the fact that norm of Fy,(f) can not be greater
than 1. Also Fy,(f) # O that is to say it is sufficient to consider Fy(f;) with

0 forO0<tr<i
fl(l‘)z .
t fortg<r<l1

Because of (1), a continuous function xq(¢) can be found such that

1
Eol(f) = [ xo(0)dr() @)
By (*) we have

Fxo(fO) =0
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for — Fo(t) = Jyxo(t)df
because fy(t) is continuous on [0, 1]. But on the other hand

1

Fo() = [ n) = [ >0

because xo(7) # 0.. This is a contradiction. Therefore C|0, 1] can not be regular (reflex-
ive)

Banach-Steinhaus or Uniform Boundedness Principle

The following theorem i.e. Uniform Boundedness Principle enables us to determine
whether the norms of a given collection of bounded linear transformations {7;} have
a finite least upper bound or equivalently if there is some uniform bound for the set
(II7:|). So we prove the following results:

Theorem 5.5. Let B be a Banach space and N a normed linear space. If {T;} is a
non empty set of continuous linear transformations of B into N with the property that
{Ti(x)} is a bounded subset of N for each vector in B, then (||T;||) is a bounded set of
numbers that is {7;} is bounded as a subset of B(B,N).

Proof. For each positive integer n, let
F, = {x;x € Band || T;(x)|| < nfor all i}

we claim that F;, is a closed subset of B. To show this let y be a limit point of F;,,. Then
there exists x € F, such that x # y and ||x — y|| < 8. But since 7; are continuous, we
have

I|Ti(x) — Ti(y)|| <€ whenever ||x—y|| < d.

Now T;(y) =T;(y —x+x)
and so

1T = ITi(y —x) + Ti(y)|
< Ty =2l + 1Tl
= 17:(y) = )|+ [ Ti(x)
<€ +n whenever ||x—y|| < 0
<n.
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Hence y € F;,. Thus F;, is closed. Also by our assumption

Since B is complete, using Baire’s Theorem, we see that one of the F,, say Fy, has non-
empty interior and thus contains a closed sphere Sy with centre x¢ and radius rg > 0.
Therefore each vector in every set T;(Sp) has norm less than or equal to ng, that is

17:(So) || < no.
Clearly So — xg is the closed sphere with radius r(y centred on the origin and so “%—:)m
is the closed unit sphere S. Since xq is in S, we have

17:(So +x0)[| = IT:(So) + Ti (xo)
< T (So) | + | Ti (xo) |
< ng—+ng=2ng.

This yields

So —xo

IS = T:
and therefore

| T3] = sup{||T(S)][; [|S]| < 1}
2
< sup{—nO
ro

2ng .
= — forevery i.
ro

which completes the proof of the theorem.
Consequences of Uniform Boundedness Principle

We prove some consequence of Banach-Steinhaus Theorem (Uniform Boundedness
Principle) having several applications in analysis.

Theorem 5.6. A non empty subset X of a normed linear space N is bounded if and only
if £(X), is a bounded set of numbers for each f in N*.

Proof. Since |f(x)| < ||f]|.]|x]|, it follows that if X is bounded, then f(X) is also
bounded for each f.
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To prove the converse, we write X = {x;}. We now use natural imbedding to map
X to the subset {Fy,} of N**. The assumption that f(X) = {f(x;)} is bounded for
each f implies that for {f(x;)} is bounded for each f. Moreover since N* is complete,
uniform boundedness theorem shows that {Fy, (f)} is a bounded subset of. Since natural
imbedding preserves norms, therefore X is evidently a bounded subset of N. This
completes the proof of the theorem.

Theorem 3. Let X be a Banach space and Y a normed linear space. Let {7} be a
sequence of terms from f(X,Y) conversing strongly to 7. Then there exists a positive
constant M such that ||7,|| < M for all n.

Proof. Since 7, Ser , then
lim 7,,x = Tx for all x.
n—soo

This implies that
sup|| T, (x)|| < eo for all x.
n

Now using uniform boundedness principle, we must have

sup ||| < oe.
n

and therefore the theorem is proved.

Definition 5.7. Let {7,,} be a sequence of linear transformation from f(X,Y).

Then {7} is said to be a strong Cauchy sequence if the sequence {7,(x)} is a
Cauchy sequence for all x € X.

Further a space B(X,Y) is said to be complete in the strong sense if every strong
Cauchy sequence in B(X,Y) converges strongly to some member of the space.

We now prove the following:

Theorem 5.8. If the spaces X and Y are Banach spaces, then B(X,Y) is complete in
the strong sense.

Proof. Let < 7, > be a strong Cauchy sequence in 3(X,Y). We must show that there
is some element 7 of B(X,Y) to which < T,, > converges strongly.

Since < T, > is a strong Cauchy sequence, it follows by definition that for any
x € X, < T,x > is a Cauchy sequence of elements of Y. Since Y is a Banach space, the
limit of this sequence must exist in Y. Thus for any x € X, the function

Tx=1mT,x (1)
n
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Is defined. Clearly, T is linear transformation and (1)) is equivalent to saying that
T,—T.

It remains to show that 7" is a bounded linear transformation. Since X is a Banach space
and < T, > converges strongly to 7, theorem 3 implies that ||7,|| < M, for all n and
some positive constant M.

Since for any x € X, we can say

1 Tox]| < [Tl 1]

this implies that
172 ()] < M. ||x]]

for any x and every n. Since it is true for every n, it must also be true in the limit. Thus
tim |7, )] < M. x|
Since norm is continuous, we have
| tim T, < M. Jx]
or

ITxe[| < M.{|x]

for every x. Hence T is bounded. Thus we have shown that every strong Cauchy
sequence in B(X,Y) converges strongly to some element 7' of 3(X,Y). Hence B(X,Y)
is complete in the strong sense and the proof is complete.

We now define what is meant by a week Cauchy sequence of elements of the normed
linear space X.

Definition 5.9. The sequence of element {7}, } of the normed linear space x is said to be
a weak Cauchy sequence if < f(x,) > is a Cauchy sequence of elements for all f € X*,
the conjugate space of X.

Theorem 5.10. In a normed linear space X, every Cauchy sequence is bounded.

Proof. Let < x;,, > be a weak Cauchy sequence of elements of a normed linear space X .
This means that < f(x,) > is a Cauchy sequence for all f € X. We recall the natural
imbedding

o:X > X"
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x — F
where F(f) = f(x) forall x € X and f € X*.¢ is a bounded linear functional satisfying
|¢(x)]| = ||x|| forall x € X.

Since < f(x,) > is a Cauchy sequence of complex numbers, for any f € X*, we have
sup £y, (F)] = sup |Fy, (f)] < e (1)
But X* is a Banach space. Therefore by Uniform Bounded Principle (1) yields
sup |, (f)] < e

Since
[Fx, I = [0 () || = [

therefore sup,, ||x,|| < oe.
Hence the weak Cauchy sequence {x,} is bounded. This completes the proof.

Theorem 5.11. In a normed linear space X, if the sequence < x,, > converges weakly
to x, that is x, — x, then there exists some positive constant m such that ||x,| < m for
all n.

Proof. We note that if
w
X}/l H X.

then certainly < x, > is a weak Cauchy sequence, Hence by Theorem 5, {x,} is
bounded, that is ||x,|| < m for constant m and the proof is complete.

After having introduced the definition of weak Cauchy sequence, we give the fol-
lowing definition of weak completeness of a space.

Definition 5.12. A normed linear space X is said to be weakly complete if every Cauchy
sequence of elements of X converges weak to some other member of X.

Our next theorem shows that any reflexive space is weakly complete.

Theorem 5.13. If the normed linear space X is reflexive, then it is also weakly com-
plete.
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Proof. Suppose < x,, > is a weak Cauchy sequence of elements of X. this means that
< f(x,) > is a Cauchy sequence for all f € X*. Now we consider natural imbedding

o:X > X
x — F;

This mapping implies that < Fy,(f) > is a cauchy sequence of scalars for all f € X*.
Since the underlying field is either real or complex (each of which is complete
metric space). This implies that the functional y defined on X** by

y(f) :lilgann(f)

exist for every f € X*. It can be verified that y is linear. We shall now show that y is
a bounded linear functional. Since ||Fy || = ||Fy|| and < x, > is a Cauchy sequence, it
follows by Theorem 5, that there is some positive number M such that

[[2al| < M.
for all n, this implies that

|Fe, ()] = 1 Gen) | < (L] [
<M.|fll

for any f € X* and all n. Hence it is true in the limit that is

lim|Fy, ()] < M| f]
= |limF, (f)| < M||f]]

or  [y(A) <M|f]l wusing (1)

for all f € X* and all n.

This however implies that y is a bounded linear functional or that y € X**.

Since X is reflexive there must be some x € X that we can identify with y that is,
there must be some x € X such that y = F;.

Hence for any f € X, we can say

lim £, (f)
y(f)
F(f)

lizn f(xn)
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= f(x)
Since this holds for any f € X*, we have
w
Xn H X.

Thus we have shown that each weak Cauchy sequence of elements of X converges
weakly to some other member of X. Hence X is weakly complete and the proof of the
theorem is complete.
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CHAPTER 6

Open Mapping and Closed Graph Thorems

First we present some definitions which will be required in the sequel. The validity of
many important therorems of analysis depends on the completeness of the systems with
which they deal. Baire’s theorem about complete metric spaces is the basic tool in this
area. In order to emphasize the role played by the concept of category, some theorems
of this chapter are stated in a little more generally than is usually needed.

Definition 6.1. If 7 : V — W is a linear transformation, then the set N of all vectors
x € V such that Tx = 0 is called the null space (or kernel) of 7. Thus

N={xeV;Tx=0}

Also Tx; =Tx; < T(x; —x) =0< x; =xp € N and that if x € N, then Tx =0 so
that if 7T is injective (one to one). Thus we have shown that T is injective if and only if
N ={0}.

Now suppose that X and Y are normed linear spaces and 7 : X — Y is a continuous
linear mapping. Let xo € N (null space of T') and let x,, — x. Since T is continuous
Tx, — Tx thus Tx = lim,_,.c Tx, = 0. Hence x € N. This proves thatif 7 : X — Y is
continuous, then null space of T is closed.

Definition 6.2. Let X and Y be normed linear spaces. Then a linear mapping 7 : X — Y
will be called open mapping if it maps open sets into open set.

Definition 6.3. The mapping 7 : X — Y where X and Y are normed spaces as will be
called a homeomorphism if it is bijective, continuous and open or equivalently 7 : X —
Y is a homeomorphism if it is bijective and bi-continuous.

Definition 6.4. Let £ be a normed linear space. A subset A of E is called nowhere
dense in E if A has an empty interior. Q is everywhere dense in R while integers are
nowhere dense in R. Thus a nowhere dense set is thought of a set which does not cover
much of the space.

Baire Category Theorem.
It states that a complete space can not be covered by any sequence of no-where dense
sets.
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Open mapping Theorem or Interior Mapping Principle

Theorem 6.5. Let B and B be Banach spaces. If T is a continuous linear transformation
of B onto B, then T is an open mapping. (Thus if the mapping T is also one to one, then
7! is continuous).

Proof: First of all, we prove a Lemma

Lemma. Let B and B’ be Banach spaces. If T is a continuous linear transformation of
B onto B, then the image of each open sphere centred on the origin in B contains an
open sphere centred on the origin, in B’

Proof. Let S, and S/ be open spheres with radius r centred on the origin in B and B’
respectively. Then
T(S,)=T(rS))=rT(S)

So, it is sufficient to show that T'(S|) contains some S...
We first prove that 7(S}) contains some S... Since 7T is onto, we note that

B =] T(Sn).

n=1

Being a Banach space, B’ is complete and so by Baire’s theorem, some 7'(S,,) has an
interior point yg lying in 7'(Sp, ). Since the mapping y — y — y¢ is a homeomorphism of
B’ onto itself. T(S,,) — yo has the origin as an interior point. Since yj is in T'(Sy,) we

have
T(Sno) —yo C T<S2no)

which in turn implies that

T(Sno) —Yo= T(Sno) —yo € T(SZrlo)

which shows that the origin is an interior point of 7'(S2,,). As we know that multipli-
cation by any non-zero scalar is a homeomorphism of E’ onto itself. So

T(Szno) = 2n0T(Sl) = 2n0T(S1)

and hence the origin is also an interior point of 7(S;). Thus S- C T(S;) for some posi-
tive number €. We complete the proof by showing that S C 7'(S;) which is equivalent

oS, CT(S1).
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Let y € B’ be such that ||y|| <€. Since y is in T(S}), there exists a vector x; in B
such that ||x;|| < I and ||y —y1|| < 5, where y; = T'(x1). Further Se)2 CT(S1/2) and
[y —y1]l < §, there exists a vector x, in B such that ||x;[| < 3 and ||(y —y1) —y2|| < §
where y; = T'(x;), continuing in this way, we get a sequence < x, > in B such that
[l || < % and

€
by =iyt )l < 5
where y, = T(x,). Let S, = x; +x2 + ...+ x;, then
1Sall = |1 +2x2+ ...+ x|
< ][ 4 ezl + - - - 4[]

1 1
<1+§+"‘+2n_—1<2

Also for n > m, we have

180 = Smll = [PXmr1 +Xmi2+ -+
< |+ o2l + -+ [l
1 1 1
<2—m+.. +W+...+F

1 1
- 2m—1 [1 B n—m

| = 0asm,n — co.

Hence {S,} is a Cauchy sequence in B and since B is complete, there exists a vector x
in B such hat lim §,, = x and so
n—oo

X[} = [[Tim S [| = lim | S, [} <2 <3
which implies that x € S3. Now
i+t =Tx)+T(x2)+...+T(xn)
since 7 is continuous, x = lim.S,

=  Tx=lim(TS,)
n

=lim(y; +y2+...+yn)
= Tx=y
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Thus y = T'x where ||x|| < 3 so thaty € T'(S3).
Hence we have proved that

yESL =y€eT(S3) andso S- C T(S3)

Proof of Main Theorem: It is sufficient to show that if G, is an open set in B, then
T(G) is also open in B'. To show it let v € T (G) we shall show that y is an interior point
of T(G) i.e. there exists an open sphere centered on y and contained in 7(G). Let x be
a point in G such that y = T'x. Since G is open, x is an interior point of G.

Therefore x is the centre of an open sphere written in the form x = Sr, contained
in G. Hence by the above Lemma, T'(S,) contains some sphere S, . Then y + S/ is an
open sphere centred on y.

Moreover

y+S,, Cy+T(S,)
=T(x)+T(S))
=T (x+Sr)
CT(G)
Hence y + S;l is an open sphere centred on y and contained in 7(G). Consequently
T(G) is open. Hence the result.

Corollary: A one to one continuous linear transformations of one Banach space onto
another is a homeomorphism.

Proof: The given hypothesis yields that the linear transformation is bijective and con-
tinuous. Further by open mapping theorem, the linear transformation is also open.
Hence it is homeomorphism.

Projections on Banach spaces

Definition 6.6. Let L be a vector space. We say that L is the direct sum of its subspace
say M and N ; if every element z € L has a unique representation z = x+y with X in M
and y in N. In such a case we write L=M & N.

Define a mapping P : L — L by P(z) = x. Then P is a linear transformation, then

(i) P(z) =zifand only if z € M
(ii) P(z) =0ifand only ifz € M
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(i11) P is idempotent that is P2 = P. Infact

Such a linear mapping P is called a projection on the linear space L.

Thus if L is the direct sum of its subspaces M and N, then there exists a linear
transformation P which is idempotent.

But, however in case of Banach spaces, more is required of a projection than more
linearity and idempotence we have

Definition 6.7. A projection on a Banach space is a projection on B in the algebraic
sense (linear and idempotent) which is also continuous.

It follows from the above discussion that if B is the direct sum of its subspaces M
and N, then there exists a linear transformation P which is idempotent. Further we have

Theorem 6.8. If P is a projection on a Banach space B and if M and N are its range
and null space, then M and N are closed linear subspaces of B such that B=M ©N.

Proof. We are given that P is a projection on a Banach space B and M and N are range
and null spaces of. Thus M is linear, continuous and idempotent and

M = range of P = {P(z);z € B}
N = null space of P = {z; P(z) =0}
Let z € B. Consider
z=P(z)+(I—-P)z (D

where I denotes the identity transformation on B such that /(z) = z for all z € B.
Clearly p(z) is in M and since P is idempotent, we have

P{I=P)(2)} = P{(I = P)}(2)
= (P-P))(2)
— (P~ P?)() = 0(z) = 0
It follows therefore that (I — P)(z) € N, the null space of P. Therefore equation (1)

gives a de composition of z according to the subspaces M and N. This decomposition
is unique because if we have another representation as z=x+y, x € M,y € N then
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and

Thus B =M & N. We know that the null space of a continuous linear transformation is
closed. Therefore continuity of P implies that N is closed.
Further, since M = {P(z);z € B} = {x; P(x) = x}

=  M={x(-P)(x)=0}

It follows that M is the null space of continuous linear transformation / — P and hence
closed. Thus M and N are closed and B = M & N. Hence the result.
As an application of open mapping theorem, we have

Theorem 6.9. Let B be a Banach space and let M and N be closed linear subspaces of
B such that B=M @& N. If z = x+y is the unique representation of a vector in B as the
sum of vectors in M and N, then the mapping P defined by P(z) = x is a projection on
B whose range and null space are M and N.

Proof. Let P : B — B be defined by P(z) = x forz=x+y, x € M, y € N. Then since
P(z) = x for z € B, we have M to be the range of P. Also P(y) =0 fory € N. Therefore
N is the null space of P.
Further
P2(z) = P(P(2) = P(x) =x = P(z)

Implies that P is idempotent. Hence to prove that P is a projection on B, it only remains
to show that P is continuous. Let

z=x+yxeM,ye N

be unique representation of the elements of the Banach space B. Define a new norm on
B by
21" = [l + Lyl

and let B’ denote the linear space B equipped with this new norm, then B’ is a Banach
space and since

P@)| = llxll < llxll + Iyl = llz’
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It follows that P in continuous as a mapping of B’ into B,. It is therefore sufficient to
show that B and B’ are homeomorphic. Let T denote the identity mapping of B’ onto B.
Then

IT@)N = Izl = llx+ Y[l < llxll + Iyl = [Iz])"
Shows that T is one to one continuous linear transformation of B’ onto B.
Open mapping theorem now implies that T is a homeomorphism. Thus B and B’
are homeomorphic. Hence P : B — B is continuous and therefore a projection on B.

Closed Linear Transformations and Closed Graph Theorem

Let X and Y be normed linear spaces. Then the Cartesian product X x Y of X and Y
becomes a normed linear space under the norm defined by

G )= [l + (1]

Further if X and Y are Banach spaces, then X x Y is also a Banach space w.r.t. the norm
defined above.

Definition 6.10. Let 7 : B x B be a linear transformation of a Banach space into another
Banach space B’. Then the collection of ordered pairs.

Gr = {(x,Tx);(x,Tx) € Bx B’}

is called the graph of T'. It can be shown that G7 is a linear subspace of B x B'.

Definition 6.11. Let X and Y be normed linear spaces and let D be a subspace of X.
Then the linear transformation 7 : D — Y is called closed if {x,} € D,limx, = x and
n

limTx,=yeY implyx € D andy=Tx.
n

As justification for the name given closed transformation in the above definition, we
now show that a linear transformation 7 is closed iff its graph G7 is a closed subspace
of X xXY.

Theorem 6.12. A linear transformation is closed iff its graph is a closed subspace.

Proof. Let X and Y be normed linear spaces and let D be a subspace of X.
Suppose first that 7 : D — Y is a closed linear transformation. To show that Gr is
closed, we must show that any limit point of Gr is actually a member of Gr. Therefore
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there must be a sequence of points of Gr, (x,, Tx,),x, € D converging to (x,y), this is
equivalent to
1t Tocn) || = [, ¥1] =0

or
|(xp —x,Txp —y)|| = 0

or
%0 — x|| + || Txn — y]| = 0= xp — xand Tx, —y

Since T is closed, this implies that x € D and y = T'x.
Therefore we can write that

(x,y) = (x,Tx) € Gy

= Every limit pt (x,y) of GT is a member of Gr.
= G 1s closed.
Conversely suppose that Gt 1s closed, and let x, — x,x, € D, for all n as Tx,, — y.
We must show that x € D and y = T'x. The condition implies that

(%n, Txn) = (x,y) € Gr

Since Gr is closed we have

and thus we have
(xay ) € GT

But by the definition of G7, this means that x € D and y = Tx. Hence T is a closed
linear transformation. This completes the proof of the theorem. The next things we
wish to investigate is when a bounded (continuous) transformation is closed. Infact, we
prove.

Theorem 6.13. Let X and Y be normed linear spaces and let D be a closed subspace of
X.If T : D —Y is bounded, then T is closed.

Proof. D is a closed subspace of X and 7 : D — Y is bounded. If < x,, > is a conver-
gent sequence of points of D such that Tx,, — y, then D being closed, the limit of the
sequence < x;, > must belong to D. On the other hand, the continuity (boundedness)
of T implies that Tx,, — Tx. Hence y = Tx. (since Tx,, — y ). Thus T becomes closed.
Hence the result.
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An immediate consequence of the theorem is of the following :

Corollary. Suppose 7 is linear transformation from a normed linear space X into an-
other normed linear space Y. If T is continuous, then T is closed. Also then using
Theorem A, Gt is closed.

Proof. We know that the entire space X is always closed, therefore Theorem B applies
and the result follows.

Theorem 6.14. Let X and Y be normed linear spaces and let D be a subspace of X. If
T : D — Y is a closed linear transformation, then 7! (if exists) is also a closed linear
transformation.

Proof. Since T is closed, its graph.
Gr ={(x,Tx);x € D}

is closed, let T(D) denote the range of T. Since 7! exists, for any y € T (D), there is
a unique x € D such that y = Tx or T~ (y). Therefore graph of T can be written as

Gr ={(T"'y;y);y € T(D)}

Consider now the mapping
XxY —=YxX

(26,y) = (3%)
This mapping is isometry, since Isometrics map closed sets into closed sets and the set
{(T~'y,y),y € T(D)} is closed. It follows that the set {(y,7~'y),y € T(D)} is also
closed. But this last set is just the graph of 7~!. Thus we have proved that that graph
of T~ is closed or hence T~! is closed by Theorem A.

Theorem 6.15. Let D be a subspace of a normed linear space X andlet 7 : D — Y be
a linear transformation from D into a Banach space Y. If T is closed and bounded, then
D is a closed subspace of X.

Proof. It is sufficient to show that any limit point of D is also a member of D.
Hence suppose that x is a limit point of D. This means that there must be some
sequence {x,} of points of D such that x, — x. Consider now

1T = Toxml| < T [0 — x|
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Since
|| — Xm|| — 0 as n,m — oo

as every convergent sequence is Cauchy.
It follows that < T'x,, > is a Cauchy sequence in Y. But Y being a Banach space is
complete. Therefore there exists x € Y such that

Tx, —y.

Thus we have x, — x and Tx, — Y.. Now since T is closed. This implies that x € D.
Hence D contains all its limit points and hence closed. This completes the proof of the
theorem.

We now state and prove Closed Graph Theorem.

Closed Graph Theorem

Theorem 6.16. Let B and B’ be Banach spaces and let T : B B be a linear transforma-
tion. Then graph of T is closed if and only if T is continuous.

Proof. Suppose first that 7" is continuous. Then Corollary to Theorem B implies that
Gr is closed.

Conversely suppose that G is closed. Since B and B’ are Banach spaces. It follows
that B x B’ is a Banach space. Since closed subsets of a complete metric space must
be complete, it follows that Gr (being closed) is Banach space too. Now consider the
mapping

f:Gr—B
defined by
fx,Tx)=x
Clearly f is a linear transformation. We claim further that f is bounded. To prove
this, we note that
1A Ce T = [l < el 4+ (17}
= [1(x, Tx)]|
which implies that f is a bounded linear transformation. Further f(Gr) = B and there-
fore f is onto. We shall show that f is one to one. Also we know that a linear transfor-

mation is one-to-one if its kernel (null space) consists of identity element only. There-
fore. We need to prove that (0,0) is the only element f maps into zero. Hence, suppose

fx,Tx)=x=0
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But x = 0 implies that 7x = 0 and so
(x,Tx) = (0,0)

and hence f is one to one. Thus f : Gr — B is bijective and therefore f~! exists.

Now Gt and B and Banach spaces and f is a continuous linear transformation and
f~!is continuous. To complete the proof we must show that if x, — x, then Tx, — T'x.
[ T is continuous]. Hence suppose that x, — x.

Since f~! is continuous, we have

f_lxn — f_lxa

(xn, Txy) = (x,Tx)

(xp —x,Tx, — Tx) — (0,0)
= Tx, —Tx

U

Thus T is continuous. Hence the result.

Equivalent Norms

Suppose X is a vector space over the scalar field F and suppose that ||.||; and ||.||, are
each norms on X, Then ||.||; is said to be equivalent to ||.||, written as ||.||; ~ ||.||2,, if 3
positive numbers a and b such that

allx|ly < ||x|l2 < ||x||;1 forall x € X.

This relation is an equivalence relation on the set of all norms over a given space.
Further, if two norms are equivalent, then certainly if < x, > is a Cauchy sequence
with respect to ||.||; it must also be a cauchy sequence with respect to ||.||» and vice-

versa.
Let a basis for he finite dimensional space be [x,x,...,x,]. For any x € X, there
exist unique scalars o, 0, ..., 0, such that x =Y | ax;.. Now ||x|jo = max |y is
l

indeed a norm. This norm is called Zeroth Norm. We

Theorem 6.17. On a finite dimensional space, all norms are equivalent.

Proof. We shall show that all norms are equivalent by showing that any norm is equiv-
alent to the particular norm defined above and called the Zeroth norm.
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Let a basis for the finite dimensional space X is given by x,x2,...,x,. For any
x € X there exist unique scalars @, 0, ..., ®, such that
n
X = Z oGX;. (*)
i=1

Now ||x||p = max || is indeed a norm.
l

Now let |||| be any norm on X. We want to find real numbers a,b > 0 such that (1)
is satisfied, where || ||, is replaced b ||.|| and ||.||; is replaced by || ||o.
The right hand side of (1) easily satisfies

allxlly < [lxfl2 < bllxls (D)

since from (*)

n n
Il = [} cxill <} || e
i=1 i=1

n
< max|ai| Y x|
i=1

n
< llxllo Y I1il
i=1

because, since the basis is fixed, we can take as the number b

n
b=} I
i=1

to get for any x € X,
1] < bl|x[lo

The left side of (1) does not follow quite as simply. Consider the simple case of a one-
dimensional space with basis x;. Any vector in the space X can be written uniquely
as

X = 01X

for some o € F. Hence
x| =[] [ ]

Thus in this case, the number a on the left side of (I]) can be taken to be just ||x;|].
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Having verified this, we shall now proceed by induction, suppose the theorem is
true for all spaces of dimension less than or equal to n — 1. We can now say that, if
dimX = n, with basis {x1,x7,...,x,} and

M =<Xx1,x2,...,Xp—1>
be the subspace spanned by the first n — 1 basis vectors, then

[F1F~ {1 flo

in M. Since this is so, if {y,} is a cauchy sequence of elements from M w.r.t. to | |,
then {y,} is also a cauchy sequence with respect to || ||o.. Consider the ith term of this
sequence now :

Vi = a](i) + Oﬂz(i)XZ +...+ a,(lizlxn_l

By the above
||yn_)’m||0_>asnam_>°° ()

Since {y,} is a cauchy sequence.

" — ™| which by (2) implies

But [y, — ymllo = m}';lX |a,

oy

: —aj(.m)| — 0, asn,m — o 3)

for j=1,2,...n—1. Since F = R or C, and each is complete and (3) states that if the

{Ocj(-m)} is a cauchy sequence, there must exist &y, 0, ..., 0, € F such that

o™

;o ai(j=12,...,n—1)

In view of this, it is clear that

n
Ym =y = Z iX;
J=1

with respect to the zeroth norm. Further

Il o]
v 8y oy Loy

Thus under the induction hypothesis, are have shown that subspace M is complete with
respect to an arbitrary norm which immediately implies that it is closed.
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Furthermore, from the above, we see that this statement will be true for any finite
dimensional subspace of a normed space. Consider the nth basis vector x,, now and
from the set

Since for any y,z € M,
12+ 2= (en + )| = llz— Il

Since x, + M is seen to be isometric to M under the mapping z € x,, + z. Hence since M
is closed, x, + M must be closed as well which implies that C(x,, + M) is open, [where
C(x, + M) is the complement of x,, + M] we now contend that

0¢x,+M

for if it did, we would be able to write for some By, B2,...,Bi—1 € F, 0 = x, + Bix; +
Baxa + ...+ Bu—1X4—1, which is ridiculous. Also 0 is a point of the open set C(x,, +M);
Hence there must be a whole nbd of zero lying entirely within C(x, +M)). In other
words, there must exist C, > 0 such that for any

XEX,+M,|x—0| >Cp,,0€C(x,+M)

[Note that here we say that the distance from any point x,, + M to zero is positive].
Thus forallo; € F(i=1,...,n—1),

||061X1 +ooxy ...+ 01X, —l—an >C,

or

o, —

- 1xn71+an > Gy
(04

n

o1
|—xn+...+
Oy
which implies for any o, € F, that
|ox) + 0pxp + ...+ ouxn || > @, Cy

because we can write for o, # 0.
Suppose now that we had not taken

M=<xp,x2,...,X—1 >

but had taken instead

< X1,X25 0«5 Xi—15Xi415- -+ Xn >
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since the only fact about M was that its dimension was n — 1. It is clear that in an
analogous fashion we could have arrived at some ¢; > 0 such that

|oxy + ...+ 0xn|| > Cif o]
forany i=1,2,...,n. In view of this we can say for any
n
x=Y ox,
i=1
llaix) + ooxz + ... + Quxy|| > minCymin | 0| = minG||x||o
1 1 1

This completes the proof of since a = minC; is positive.
1

Corollary: If X is any finite dimensional normed linear space, X is complete [since all
norms are equivalent].

Corollary: If X is a normed linear space and M is any finite dimensional subspace, M
is closed.

Theorem 6.18. Suppose A : X — Y, where X and Y are normed linear spaces. If X is
finite dimensional, A is bounded.

Proof. Suppose dim X = n, that a basis for M is given by
X1,X2y...,Xp.

In view of this for any x € X, scalars a;, ;. .., &, such that

n
X = Z oixi,
i=1
and A is linear, we have

Ax = i oA X;
=1

1=

Letting K = Y7 | ||Ax;||, we have
n
lAx]| = || Y ctiAxi|
i=1

n
<Y |l ||Axi]]
i=1
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< [|xlo-K.

since ||x||o = max |og].
l
Since all norms in a finite dimensional space are equivalent and A is bounded with

respect to zeroth norm, it follows that A must be a bounded linear transformation no
matter what norm is chosen for X.



98

CHAPTER 7

Weak, Strong Convergence and Compactness on
Linears Operators

Definition 7.1. If |7, — T'|| — 0, then we say that the sequence < 7, > of operators (or
linear transformation) converges to 7 and this convergence’s is called convergence in
norm or strong convergence. The linear transformation 7 is said to be the strong limit
of the sequence < 7,, >. Also < T,, > is said to converge weakly towards the linear
transformation 7 if the sequence < T, (x) > converges to Tx.

Definition 7.2. Let E be a normed linear space, < 7, > a sequence of elements of £
and xo € E. If the sequence f(x,) — f(x0) as n — o for all functionals f € E*, then
< T, > is said to converge weakly to xp and we write

w
.Xn — X().
xo is called the weak limit of the sequence < 7;, >.

Remark: A sequence can not converge weakly to two different limits, that is the weak
limit of a sequence is unique.

We suppose that x, — xg. and x, — yo i.e f(x,) = f(x0) and f(x,) — f(yo) for
an arbitrary linear f. Then

f(xn) = £ (o)
or
f(xo—y0) =0,
Now if we choose an fy with || fo|| = 1 and fo(xo —yo) = ||xo — yo/|, then we have
f(xo—yo) =0i.e. xo=yo
Proposition: Let N be a normed linear space and (x,) C N. Then x,, — x in norm
implies x, —s x.
Proof.
|f () = f ()] = [ f (n = %)

<l lloen = x[| = Oasn — e

[since x, — xinnormV f € N* |
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w
= X, —X.

Remark. Thus by above prop, norm convergence or strong convergence = weak con-
vergence.

But the weak convergence need not imply strong convergence. However in a finite
dimensional normed linear space, the two convergences are equivalent.

Theorem 7.3. In a finite dimensional space, the notion of weak and strong convergence
are equivalent.

Proof: Since strong convergence = weak convergence always.

For the converse suppose < 7, > converges weakly i.e. f(x,) — f(x)Vf € E* and E
is of finite dimensional. Since E is finite dimensional, 3 a finite system of linearly
independent elements ey, e3,. .., e, and every x € E can be represented in the form

x=C8le1+&er+ ...+ ey
with real &1, &y, ...,&. Thus
2
xn=EMe+EPer+...+EMe

Now we consider such functionals f; € E* for which fi(e;) = 1 and f;(ex) = 0 for k # i.
Thus

0
filw) = & and fifxo) = £
But since the sequence f(x,) — f(xo) for every linear functional f, so also fj(x,) —
fi(xo) that is
g =10 fori=1,2,....k
Let M be the greatest of the numbers ||¢;||, (i = 1,2,...,k) i.e. M = max ||¢;||.
Then for any given €> 0, 3 an ng such that

() _g(0), _ &
g <

foralli=1,2,...,kand n > ng. Thus

E" —eMyey

D=

[ = xo]| = |
i=1
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<e.

Hence the sequence < x, > converges strongly to xo.
Compact Operation on Normed Spaces

Definition 7.4. Let X and Y be normed spaces. An operator 7 : X — Y is called a
compact linear operator (or completely continuous linear operator) if 7 is linear and
if for every bounded subset M of X, the image T (M) is relatively compact that is the

closure T (M) is compact.

Remark: Many linear operators in analysis are compact. A systematic theory of com-
pact linear operators emerged from the theory of integral equations of the form

b
(T —Al)x(s) =y(s) where Tx(s) = /a K (s,t)x(t)dt.

where A is a parameter, Y and kernel K are given functions (subject to certain condi-
tions) and x is the unknown function. Such equations also play a role in the theory
of ordinary and partial differential equations. The term compact is suggested by the
definition. The older term completely continuous can be motivated by the following
Lemma which shows that a compact linear operator is continuous but the converse is
not generally true.

Relation of Compact and Continuous Linear Operator
Theorem 7.5. Let X and Y be normed spaces. Then

(a) Every compact linear operator 7 : X — Y is bounded, hence continuous

(b) If dim X = oo, the identity operator / : X — Y (which is continuous) is not compact.

Proof: (a) Since the unit sphere U = {x € X : ||x|| = 1} is bounded and T is compact,
so by definition 7 (U) is compact. Now since every normed space is metric space and

by the result “Every compact subset of a metric space is closed and bounded.” so that

sup ||Tx|| < oo.
[Ixfl=1

Hence T is bounded. But by the result “Let 7 : D(T) — Y be a linear operator, where
D(T) C X and X,Y are normed spaces. Then
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(1) T is continuous if and only if 7" is bounded.
(2) If T is continuous at a single point, 7" is continuous’.

Thus T is continuous. Hence every compact linear operator 7 : X — Y is bounded and
hence continuous.

(b) Since the closed unit ball M = {x € X;||x|| <1} is bounded. If dimX = oo,
then by the result “If a normed space X has the property that the closed unit ball M =
{x;||x|| <1} is compact, then X is finite dimensional” M can not be compact. Thus
I (M) = M = M is not relatively compact.

Remark. From the definition the compactness of a set, we obtain a useful criterion for
operators.

Theorem 7.6. Let X and Y be normed spaces and 7" : X — Y be linear operator. Then T
is compact if and only if it maps every bounded sequence < x, > in X onto a sequence
< x, > in Y which has a convergent subsequence.

Proof: If 7 is compact and < x, > is bounded, then the closure of < x,, > in X is
compact. Since every normed space is metric space and by the definition, “a metric
space X is said to be compact if every sequence in X has a convergent subsequence”.
Thus < x, > contains a convergent subsequence.

Conversely assume that every bounded sequence < x;,, > contains a subsequence
< Xpr > such that < Tx,; > converges in Y. Consider any bounded subset B C X,
and let <y, > be any sequence in 7 (B). Then y, = Tx, for some x, € B and < x,, >
is bounded since B is bounded. But by assumption < T'x, > contains a convergent

subsequence. Hence by definition of compactness, T (B) is compact. Since <y, > in
T (B) was arbitrary. Thus by definition of compact operator, T is compact.

Remark: The sum 77 4 7 of two compact linear operators from normed space X to
normed space X is compact. Similarly 77 is compact, where « is any scalar. Thus the
compact linear operators from X into X form a vector space.

Theorem 7.7. Let X and Y be normed spaces and 7 : X — Y a linear operator. Then

(a) If T is bounded and dim 7 (X) < oo, the operator T is compact.
(b) If dimX = oo, the operator 7" is compact.
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Proof: (a) Let < x, > be any bounded sequence in X. Then the inequality ||7x,|| <
IIT||.||xx| shows that < Tx, > is bounded. Now by the result “In a finite dimensional
normed space X, any subset M C X is compact if and only if M is closed and bounded”
and dim (X) < oo implies that < T'x, > is relatively compact. It follows that < Tx,, >
has a convergent subsequence. But by Theorem 2, 7' : X — Y is compact if and only if
T maps every bounded sequence < x, > in X onto a sequence < Tx;, > in Y which has
a convergent subsequence”. Hence the operator T is compact.

(b) Since we know that if a normed space X is finite dimensional then every linear
operator on X is bounded operator. Thus 7 is bounded. Also dimX = c. Now by the
result “If 7' is a linear operator and dim D (T') < oo, then dimR (T') < n “where D (T)
and R (T) are domain and range of 7. Thus if dim7 (X) = oo, then dim(X) < . Now
since dim7T' (X) < oo and 7T is bounded. It follows by (a) part that the operator T is
compact.

Compactness of Limit of the Sequence of Compact Operators

Theorem 7.8. Let < T, > be a sequence of compact linear operators from a normed
space X into a Banach space Y. If < 7, > is uniformly operator convergent, say
T, — T|| — 0, then the limit operator T is compact.

Proof: Using a diagonal method, we show that for any bounded sequence < x,, > in X,
the image < T'x,, > has a convergent subsequence and then apply Theorem 2 i.e. “Let
X and Y be normed spaces and 7 : X — Y, a linear operator. Then T is compact if and
only if it maps every bounded sequence < x, > in X onto a sequence < Tx,, > inY
which has a convergent subsequence.”

Since Tj is compact, < x;,, > has a subsequence < xi, > such that < Tjxy,, >
is Cauchy. Similarly < x;, > has a subsequence < x; ,, > such that < Trx,, > is
Cauchy. Continuing in this way, we see that the diagonal sequence <y, >=< Xy, >
is a subsequence of < x,, > such that for every fixed positive integer n, the sequence
< Tyym >men is Cauchy. < x,,, > is bounded, say ||x;,|| < ¢ for all m. Hence ||y,|| < ¢
for all m. Let €> 0. Since 7,, — T, there is an n = p such that

|7 —1T,|| < € /3¢ (1)
Since < T,y >men 1s Cauchy, there is an N such that

<
“Tij_Tp)’k“<§(j7k>N) (2)
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Hence we obtain for j,k > N.

1Ty = Tyi|| < || Tyj = Tpy; || + | Ty — Tove|| + || Tpyj — Tox|
-
< =Tl sl +5 + 17 = T[] [l34]

< E.c—l— < + E.c (Using (1) and (2))
3c 3 3¢
=c

This shows that < Ty,, > is cauchy and converges since Y is complete. But <y, >
is a subsequence of the arbitrary bounded sequence < x,, >. Hence using Theorem 2,
which states that “Let X and Y be normed spaces and 7 : X — Y, a linear operator.
Then T is compact if and only if it maps every bounded sequence < x, > in X onto a
sequence < T'x,, > in Y which has a convergent subsequence,” we get that the operator
T is compact.

Remark. The above theorem states conditions under which to limit of a sequence
of compact linear operators is compact. This theorem is also important as a tool for
proving compactness of a given operator by exhibiting it as the uniform operator limit
of a sequence of compact linear operators.

Note that the present theorem becomes false if we replace uniform operator con-
vergence by strong operator convergence ||7,x— Tx|| — 0. This can be seen from

T, : 1> — I? defined by
T, (x) = (&1,-..,6,,0,0,...)

Where x = (§;) € I2. Since T,, is linear and bounded, T}, is compact by Theorem 3(a).
Clearly T,,x — x = Ix but I is not compact since dim /> = oo,

The following example illustrates how the theorem can be used to prove compact-
ness of an operator.

Example (space /%). To prove compactness of T : > — [? defined by
y=(n;) =Tx

where n; =¢&;/jfor j=1,2,...
Solution. 7 is linear. If x = (5 j) € I, then. Let T, : I> — 1% be defined by

& & En
Tox= (6,222 %00, ).
* (é‘ 2°37
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T, is linear and bounded and is compact by Theorem 3(a), Further

I(T — )] = i = Y olel

j—n+1 Jj— n—H

ST y lgfe M

j=n+1 +1)

Taking the supremum over all x of norm 1, we see that

T-T,| <——
IT-T) < —

Hence 7,, — T and hence T is compact by the above Theorem 4.

Theorem 7.9. Let X and Y be normed spaces and 7 : X — Y a compact linear operator.
Suppose that < x,, > in X is weakly convergent, say, x,, —» x. Then < T'x,, > is strongly
convergent in Y and has the limit y = T'x.

Proof. We write y, = Tx, and y = Tx. First we show that

Yn =Y. (1)
Then we show that

Yn =Y 2)
Let g be any bounded linear functional on Y. We define a functional f on X by setting

f(z2)=¢(Tz) (z€X)
f is linear and bounded because T is compact, hence
f (@) = g (T < llgll - 1Tzl < [Tl ]|z

By definition x,, — x implies f (x,) — f (x), hence by the definition, g (Tx,) — g (Tx),
that is, g (y,) — g () since g was arbitrary, this implies that y, — y. which proves (1).

Now we prove (2). Assume that (2) does not hold. Then < y, > has a subsequence
< yuk > such that

[y = y[l =1 (3)
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for some 1 > 0. Since < x, > is weakly convergent, by the result “Let < x,, > be
a weakly convergent sequence in a normed space X, say x, —» x, then the sequence
< ||x,]| > is bounded”. Thus < x,, > is bounded and so is < y,; >. But by Theorem 2,
“Let X and Y be normed spaces and 7 : X — Y, a linear operator.

Then T is compact if and only if it maps every bounded sequence < x;,, > in X onto
a sequence < T'x, > in ¥ which has a convergent subsequence”, since the operator 7'
is compact, < T'x,; > has a convergent subsequence say <y; >. Lety; — y. Hence
;i 4 3. Since by the result “ Let < x,, > be a weakly convergent sequence in a normed
space X, say x, —» x, then every subsequence of < x,, > converges weakly to x *, Thus
by this result and () we have y = y. consequently

|y=3[—0
But

[¥i=yl=zn>0  [by(3)]
This contradicts, so that (2) must hold.

Closed Range Theorem

Definition 7.10. Suppose X is a Banach space, M is a subspace of X and N is a subspace
of X* (Dual space of X ), neither M nor N is assumed to be closed.
Their annihilators M- and N are defined as follows:

M* = {x* € X*, < x,x* >=0forall x € M}

N*t ={xeX,<x,x* >=0forall x* € M}

Thus M~ consists of all bounded linear functionals on X that vanish on M and N is
the subset of X on which every member of N vanishes. It is clear that M and N are
vector spaces. Since M is the intersection of the null spaces of the functionals, M~ is a
weak* closed subspace of X*.

The weak*-topology of X* is by definition, the weakest one that makes all func-
tionals

X" =< x,x" >

continuous. Thus the norm topology of X* is stronger than its weak*-topology.

Notation. If 7 maps X into Y, then the null space of 7" and range of 7" will be denoted
by N (T) and R (T) respectively

N(T)={xeX,Tx=0}
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R(T)={yeY;Tx=yforsomexec X}

Theorem 7.11. If X and Y are Banach spaces and if T € B(X,Y) [set of bounded or
continuous linear operator], then each of the following three conditions implies the
other two:

(a) R(T)isclosedinY.
(b) R(T*) is weak*-closed in X*.
(c) R(T*) is norm-closed in X*.

Proof: It is obvious that (b) implies (c). We will prove that (a) implies (b) and that (c)
implies (a).

Suppose (a) holds. Then N (T)" is the weak closure of R (T*).

To prove (b), it is therefore enough to show that
N(T): c R(TY)
Pick x* € N (T)™". Define a linear functional A on R (T) by
ATx=<xx*> (x€X)
Note that is well defined for if Tx = Tx/, then x —x’ € N (T), hence
<x—x,x">=0
The open mapping theorem applies to
T:X = R(T)

since R (T') is assumed to be a closed subspace of the complete space Y and is therefore
complete. It follows that there exists K < oo such that to each y € R (T') corresponds an
x € X with Tx =y, ||x|| < K||y|| and

Ayl = [ATy| = |[<xx" >[ < Klyl] - [|x"]]
Thus is A continuous. By the Hahn-Banach theorem some y* € Y* extends A. Hence

< Tx,y" >=ATx=<x,x" > (x € X)
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This implies x* = T*y*. Since X* was an arbitrary element of N (T )", we have shown
that
N(T)* c R(T)

Thus (b) follows from (a).

Suppose next that (c) holds. Let Z be the closure of R (7') in Y. Define some S
€ B(X,Z) by setting Sx = Tx. Since (S) is dense in Z. Thus S* : Z* — X* is one-to-
one. If z* € Z*, then by Hahn-extensions theorem, we get an extension y* of z*, for
every x € X,

<x, Ty >=<Tx,y" >< Sx,y" >=<x,57" >

Hence S*z* = T*y*. It follows that §* and T* have identical ranges. Since (c) is as-
sumed to hold. R (S*) is closed, hence complete. Apply the open mapping theorem
to

ST Z" = R(SY)
Since S* is one to one, the conclusion is that there is a constant ¢ > 0 which satisfies

cllzl < |Is*"]]

for every 7" € Z*.
Now using the following result

“Suppose U and V are the open unit balls in the Banach space X and Y, respectively.
Suppose T € B(X,Y) and C > 0,

(a) If the closure of T (U) contains ¢V, then
T(U)DcV
(b) If c|ly*|| < ||T*y*|| for every y* € Y*, then

T(U)DcV.
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CHAPTER 8

Inner Product and Hilbert Spaces

The notion of dot product and the condition of orthoganality are totally missing
in normed linear space, extention of these notions to any arbitrary infinite dimensional
linear space, leads to definition of inner product space on linear space in such a way
that inner product give rise to norm. The inner product spaces are special normed linear
spaces. A complete normed linear spaces is called Hilbert space. Also every Hilbert
space is a Banach space but not conversely.

The study of Hilbert space includes Schwarz, parallelogram and polrization inequal-
ities. Further defining orthoganal complements and establishing orthoganal decompo-
sition theorem guarantees that there are are plenty of projections in a Hilbert space. The
chapter conludes with proof of projection theorem and Bessel’s inequality.

Definition 8.1. An inner product space X or pre-Hilbert space is a complex linear space
together with an inner product (.,.) : X ® X — C such that

@ (xy)=(x), ¥x,y€X
(i) (Ax+py.z) =2 (x,2) +p(y,2), Vx,y,z€ X and A, € X
(iii) (x,x) >0and (x,x) =0iffx=0,Vxe X

condition (i) clearly reduces to (x,y) = (y,x) if X is real vector space. From (i) and (ii),
we obtain

(x,cy+dz) = (cy—|— dz,x)
=c(y,x) +d(z,x)
= (y,x) +d (z,x)

In any pre-Hilbert space, the following are immediate

@ (x,y+2)=(xy)+(xz)
(b) (x,Ay) =24 (x,y)
(©) (0,y) = (x,0)=0
(@) (x=y2)=(x2)— (2
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Examples

1. Let C" be the vector space of n tuples. If x = (A1,45,...,4,) and y = (U, ..., Up)
define

(X,y) = Z lkm
k=1

Then all the axioms for pre-Hilbert space are satisfied. This example is known as n-
dimensional unitary space and will be denoted by C”. In this space, the norm of x is

defined by
. 12
Ixll = ) 1]
i=1

2. Let C(a,b) be the vector space of continuous functions defined on [a,b],a < b.
Define

()= [ ¥0) 3 @a

With respect to this inner product, C|a,b] is a pre-Hilbert space. The norm of x in
Cla,b] is introduced by taking

b= ( [ 1etoar)

3. Let P be the vector space of finitely non-zero sequences. If x = (A;) and y = (),
define

(x,y) = Z )'km
k=1

This space is a pre-Hilbert space with respect to this inner product. The norm of x in

this space is defined by
- 1/2
2
x| = (Z | A >
k=1

Theorem 8.2. Each Inner Product space is a normed linear space under ||x|| = (x,x) 12,

Since all the properties of norm are satisfied. We notice that

@ |lx] = (x,x)'"* >0
(®) |[x]|=0< (x,x) =0iffx=0



(d) Forx,y € X, we have
e+ 3[7 = (x4 y,x+y) = (x,x+y) + (2 +)

= [lx,x[| + () + (6, 3) + (0, )
= [lx,x[[ 4+ (ny) + (x,9) + (%,5)
= |lx,x[ + (»y) + 2R (x,y)

< [lxlf* + [IylI* + 2 1]l [y

= (|Ixll + Iy[)?

= [yl < flxll + Iyl

Therefore, each pre-Hilbert space is a normed linear space.

Theorem 8.3. The Inner product (Scalar Product) is a continuous function with respect
to norm convergence. (Inner Product in an Hilbert space is jointly continuous).

Proof. If x, — x and y, — y, then the number ||x,||,||v.|| are bounded. Let M be their
upper bound. Then

| (X 9n) = (%0, ¥) + (X, ¥) — (x,¥))]

< (s n) = (s ) 4 [ (6, ¥) = (x,3)]

| (X, yn = ¥) + (X0 =%,

< xall 1yn = Il + llxn = x|l [Iyll ~ (by Schwarz inequality)
<M |lyn =yl + 12l flxn — x|

|(xnayn) - (x,y)|

Now since ||y, —y|| — 0 and ||x,, — x|| = 0 as n — oo, therefore |(x, —y,) — (x,y)] = 0
for n — o and hence (x, —y,) — (x,y). Thus inner product in a pre-Hilbert space is
jointly continuous.
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Theorem 8.4. (Cauchy-Schwarz Inequality). If x and y are any two vectors in an inner
product space, then

[Ce, )| < el iyl -
Proof. We have (x+ Ay,x+ Ay) > 0 for arbitrary complex A.
= (x,x+Ay)+A(y,x+Ay) >0

S @O A A 00+ ()] 2 0.

= (A Y+ 02) + AT ()| 20

if we putis A = _(ixy’?, then

() ENEY) @) 00) | (63) (529) 003)

(%@ "y T w2
e )" (6y) %) | (%) (%)
= E0TT0 T o) 2
N @J%wafzo
(3,y)
= () < (x) 0hy) =[x )1
= |G < Xl [yl

Theorem 8.5. (Parallelogram Law). In an Hilbert space H,

2 2 2 2
X+ Y17+ lx=yl" = 2"+ 2y Vx,yeH.

Proof. Writing out the expression on the left in terms of inner products.

x+y[1* + [l —y)I* = (x+y,x+) + (x+y,x+Y)
= (%,x) + (%, ) + (3,%) + (1Y) + (x,%) — (x,¥) = (1,%) + (1Y)
=2(x,x) +2(y,y)
= 2|Jx||* +21JylI>
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Polarization Identity

Theorem 8.6. In a pre-Hilbert space, (inner-product space)

2, . .2 . . 12
4(xr,y) = |l 3P = e =yl 4 x4 iyl = i e = iyl

Proof. We note that
e+ 1% = 11>+ 1)1+ (5,y) + (3,x) (1)

Replace y by —y, iy by —iy and obtain

e =112 = 212+ 1Iy112 = (6,3) — (%) 2)
and

e+ iv)|2 = [1xlf? + [Iy]|? = i (x,0) +i (7,%) 3)

e+ iv)|2 = [l + [Iy]I? = i (x,y) — i (7, %) “)

It follows that

@) — e =yI* = = xl® = 51+ () + ()
3) et iy]® =i [lxl* +illy I + (ey) = (%)
@) —iflx—iyll* = =i |lx)* = illyI* + (ey) = (%)

Adding (1), (2), (3) and (4), we get
bet 117 = e =117 i e+ iyl|* = il = iy]]* = 4 (x,y)
This completes the proof.

Definition 8.7. A complete pre-Hilbert space (Inner Product space) is called Hilbert
space. Thus a Banach space whose norm is generated by inner product is called Hilbert
space.
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Example 8.8. Denote by H, the set of all sequences x = (4;) of complex number such
that .

Y |2l <o

k=1

If x = (A) and y = (W) are sequences belonging to H, then by the parallelogram law
for complex numbers,

i+ 1) 4 A+ e* = 2| A+ 2 e

Hence
n n

n
Yo+l <2 Y AP +2 Y (el
=1 k=1 =1

for all n. Hence Y}_, |4+ t;|* < oo by the comparison test. Hence the sequence
(Ax + py) belongs to H, that is x +y € H. Furthermore if x = (A;) belongs to and H is
a complex number, then

Y AP =AY A
=1 k=1

shows that the sequence (A 4) is absolutely summable, it is denoted by Ax.
With respect to the operations x+y and Ax, H becomes a linear space. We also note
that if x = (A;) and y = () belong to H, then the series

Y A
i=1

converges absolutely. In fact, a and b are real numbers, (a — b)2 > 0 leads to ab <

% (a2 + b2) and in particular, we have

1 _
2l < 5 (12 + l?

Thus Y7, Atk converges by the comparison test.
This justifies the definition of the inner product for H as

(X,Y) = Z Akm
k=1

The axioms for a pre-Hilbert space are easily verified. The norm of an element x in this

space is defined by
1
oo 2
2
Il = (Z | A )
k=1
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It can be seen that

[[Ax][ = [A][|x]]

and that
2 2 2 2
[ +2[1° 4+ [lx =y = 21{]x[|” + 2|yl

Thus to prove that H is a Hilbert space, it is sufficient to show that H is complete.

Suppose x1,x7, ..., is a Cauchy sequence in H, that is ||x,, — x,|| — 0 as m,n — oo,

oo 2
say x, = (A') for each k, |4 — A7 < X5 |A) = A}|” = [lxm — xu||* shows that the
sequence ?Lkl , /lkz, ..., of k th components is Cauchy. Since the set of complex numbers

is complete, A" — A as n — oo for suitable A. It will be shown that Y7 | |7Lk|2 < o0
and that < x,, > converges to x = ().
Let €> 0 be given. Let p be an index such that ||x,, — x,||* <€ whenever m,n > p..
Fix any positive integer r, then we have

LA < llon <
Provided m,n > p. Letting m — oo,

ZW—M

provided n > p, since r is arbitrary, we get

Z A —A> <€ whenever n > p (1)

In particular, Y}, Mk — l,?‘z <e.

Hence the sequence < A — A} > belongs to H. Adding to it, the sequence < A" >
of H, we obtain (1) = x belongs to H. It follows from (1) that ||x — x,||*> <€ whenever
n > p. Thus x, — x and hence H is complete. This Hilbert space of absolutely square
summable sequences is denoted by /2.

Theorem 8.9. In a pre-Hilbert space, every cauchy sequence is bounded.

Proof. Let < x, > be a cauchy sequence and let N be an index such that ||x, — x,,|| < 1
whenever m,n > N. If n > N, then

[l = 11 (x =) + x|

< e — x|+l



Functional Analysis:- Author: Dr. Vizender Singh  Vetter: Dr. Ramesh Kumar Vats 115

< 1 [

Thus if M is the largest of the numbers 1+ ||xn/||, [|x1],-- -, [[xn=1] ;,» we have ||x,|| <M
for all n. Hence < x,, > is bounded.

Theorem 8.10. In any pre-Hilbert space, if < x, > and <y, > are Cauchy sequence
of vectors, then < (x,,y,) > is Cauchy (hence convergent) sequence of scalars.

Proof. By Cauchy-Schwarz inequality

| (s Yn) = (Xms Ym)|

= |(%n = Xms Yn — Ym) + (Xm, Yn — Ym) + (Xn — X, Ym) |

< | Con =X, Yo = Ym) & (Xims Yo = Ym) + (Xn = X, Ym) |

< 1 Gon =Xl Nlyn = yimll + [l - 1yn = Y | 4 1xn = X |- [[ Y|

for all m and n. Since ||x,,|| and ||y,,|| are bounded. Therefore by the above theorem,
R.H.S. of the above inequality — 0 and m,n — oo. Therefore < (x,,y,) > is cauchy
sequence of scalars and hence convergent.

Remark 8.11. It follows from this theorem, that in a pre-Hilbert space if < x, > is
a Cauchy sequence, then (x,,x,) and hence ||x,|| is a cauchy sequence of scalars, and
hence convergent.

It is clear from the definition that every Hilbert space is a Banach space. We shall
see that converse need not be true. The question arises under what condition, a Banach
space will become a Hilbert space. In this direction, we have the following result.

Theorem 8.12. A Banach space is a Hilbert space < ||gm (parallelogram) law holds.

Proof. Let H be a Hilbert space. Thus it is by definition, a Banach space whose norm
arises from the inner product taken as ||x|| = (x,x)'/?
Then

e+ 317 + flx = yII?

=X +yx+y)+(x—yx—y)

= (x.x) + (1Y) + (x,3) + (1 x) + (6,x) + (1,y) — (x,5) — (3,%)
=2(x,x) +2(y,y)

= 2|Jx||* + [IyI*.
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Thus if H is a Hilbert space, then it is a Banach space satisfying ||gm law.

Conversely: Suppose that H is a Banach space and that in H, ||gm law holds good.
We define an inner product in H by

3 =l -+ 1P ()

=g

Then (x,x) > 0 and (x,x) = 0 < x = 0 Moreover (x,x) = ||x||* and (x,y) = (y,x).
It is only to show that

(X] +x27y) = (Xl,y> + (Xz,y)
and
(0x,y) = & (x,y)
by ||gm law, we note that
e+ v w® + v = wlf* = 2 e+ ]|+ 2 | w]|?
and
2 2 2 2
lw=v+w|"+ llu—v—=wl" =2 [lu—v[|"+2[w]".
so that on substracting
i+ v 4w+ [l v = w]|? = [ — v+ w* = u—v —w||?
= 2[u+v||* =2 Ju—v]
= (u+w,v)+ (u—w,v) =2(u,v) [using(1)]
= (2u,v) )

Setting u = w, this implies (2u,v) = (u,v). Now let x; =u+w,x =u+wand y=v to
obtain
(x1,y) + (x2,y) = (x1 +x2,y) [using 2]

Similarly, (ax,y) = a(x,y). Thus a Banach space satisfying ||gm is a Hilbert space.

Example of a Banach space which is not Hilbert space

Example 8.13. We know that a Banach space is a Hilbert space if and only if ||gm Law
holds.
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Consider the linear space L; (0, 1) consisting of equivalence classes of functions summable
on [0, 1] w.r. to Lebesgue measure with the norm of f € L; [0, 1] as

1
171 = [ 17 @)ldx n

L, [0,1] is a Banach space under this norm.

We show that this norm does not satisfy || law and thus precludes the possibility of
viewing this space as a Hilbert space.

Consider the sets A = [0, 3] and B = [3, 1] and the characteristic functions of these
sets x4 and xp. We note that (1) yields.

1 2
llxa + x8]1* = (/0 |2 +xB|)

12 0 2
/ | X4+ xB| +/1/2\XA+XB’>

( 2
( / X+ 2] )
:

| xa + x8l|

2

|%A+%B|+/ |XA+XB|)
5} =1

But

1 N2 11
2||xA||2+||xB||2=z(§) +2(—> L

Thus

lota+ x811% + lxa — 281> # 2l xal® + 21|51

and therefore ||gm Law is not satisfied and hence L, [0, 1] is not a Hilbert space.

Definition 8.14. A convex set in a Banach space. B is a non empty subset S such that
x,y € S=x(1—1)+1ty € S for every real number t satisfying 0 <z < 1.
If we putt = % we see that

xyES#%GS
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Theorem 8.15. A closed convex subset C of a Hilbert space H contains a unique vector
of smallest norm.

Proof. We know that being convex C is non empty and x,y € C = % cC.
Letd = Inf {||x|| ,x € C}. There exists a sequence {x, } of vectors such that ||x,| —
d. By the convexity of C, 3 is in C. ||2322|| > d so ||x, +xa4|| > 2d. By ||gm Law,

we have

(B +xn||2+ [[%m +xn||2 =2 ||XM||2 +2 ||xn||2
= |’xm+an2:2||xm‘|2+2||xn||2_||xm+xn||2
< [xll® + 21 |* — 4d
— 2d* +2d* — 4d* = 0[||x,|| — d] as m,n — oo.

Therefore {x,} is a Cauchy sequence in C. Since H is complete and C is closed; C is
complete and their exists a vector x in C such that x,, — x. It is clear by the fact that

[l = [limox, || = ||d]| = 4

That x is a vector in C with smallest norm. To see that x is unique, suppose that x’ is a

vector in C other than x which also has norm d. Then ’%"/ is also in C and we have by

llgm law
x+x |2 |l |MW2_ x4+ |7
2 2 2 2
(e B
< =d
2 + 2

which contradicts the definition of d.
Orthogonal Complements

Definition 8.16. Two vectors x and y in a Hilbert space H are said to be orthogonal if

(X,y) =0

Since (x,y) = (y,x) we have x Ly < y L x It is also clear that x L O for every x. More-
over since (x,x) = ||x||*,0 is the only vector orthogonal to itself, if x Ly, then ||x+ y||* =
llx—y|I* = ||x[|* +|[y||* (This is known as Pythagorean theorem).
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Definition 8.17. A vector x is said to be orthogonal to a non empty set S (written as
x1S)ifxLyforeveryyeS.

Definition 8.18. The set of all vectors orthogonal to S is called orthogonal complement
of S and is denoted by S™.

Theorem 8.19. Let M be a closed linear subspace of a Hilbert space H, let x ¢ M, and
let d be the distance from x to M. Then there exists a unique vector yg in M such that

[lx = ol| = d.

Proof. Let M be a closed linear subspace of H,xM and d be the distance from x to. M
Then
inf{[lx—yl[:y €M}

Select a sequence {y,} in M such that Lnf ||x, — y,|| = d. Then by parallelogram law

n—oo

2 2
1Ym = yull” = [|(ym — %) = (Y — X)||

2 2 2

= 2lym = x[7 4 2{[yn = xl|* = | (m —2) = (3 = ¥
2 2
= 21|y —x1* +2lyn = xI* = [y +yn — 2]

2 2 Ym+Y ?
m n
= 2 P 2 22
Since 22222 € M, we have
Ym+Yn
—x|| >d.
=5 >

Therefore

Y = yall* < 21y —x[|* +2 [|yn — x]|* — 4d*
—2d>4+2d> —4d> =0, m,n — oo.

Hence {y,} is a Cauchy sequence in a closed linear space of a complete space H.
Therefore 4 an element yy € M such that

0= Jim i
Also

d = Tim [lv— 3, |
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= [loe—Timy,||

= [lx=oll

Uniqueness of yo. Suppose y; and y, are two vectors in M such that ||x —x; || = d and
|lx —x2|| = d. Then to show that y; = y;.
Since M is a subspace of H, therefore

1 +y2)

cM.
2

Y1,Y2 cEM=

Hence by the definition of d, we have

Hx_)% >d sothat ||2x— (y; +y2)|| > 2d.

By parallelogram Law, we have

2 2
I I

2 2
[(x=y1) = x=y2) " =2[[x = y1 |7 +2[x = y2 |7 = [[(x = y1) = (x = y2)
2 2 2 2
= ly2 =yill” =2 |lx =y |7 +2[[x = y2[|" + 2 |x = y2|” = ||2x — (y1 +2)]
<2d*+2d*—4d*=0

| 2

Thus ||y2 — y2||* < 0 but [[y> — y»||* < 0.

= y2—yi?=0=y2—y1 =0=y; = y.

Theorem 8.20. If M is a proper closed linear subspace of a Hilbert space H, then there
exists a non zero vector zg in H such that zo L M.

Proof. Since M is a proper linear subspace of H, then there is a vector x in H which
does not belong to M. Let d be distance from x to M. Then (by the above theorem)
there exists a vector yo in M such that

[lx = oll = d.

Define z9 = x — yo.

Since d > 0,zp is a non-zero vector, we shall show that zop M. It is sufficient to
show that if y is an arbitrary vector in M.

Then zgp L y.
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For any scalar, we have

lzo0 — ay|| =[x — (Yo + )| > d = |||

20 — aty||* = ||zo]|* > 0

(20— @y, 20 — &ty) — ||z0]|* > 0

(20:20) — @ (20, ) — & (y,20) + &0 (¥,y) — [|z0[|* > O

lz0ll* — @ (z0,y) — € (v,20) + |ex|* [ly]|* > 0

—@(20,5) — &t (v,20) + || [y[I* > = [lzol? (1)

Ll il

Set & = B (zo,y) for an arbitrary real number 3. Then (I) becomes

=28 |(z0.9)1* +B*I(z0.») P I]I* = 0.

If we now puta = |(Zo;)’)|2 and

b=,
we obtain
—2Ba+ B*ab >0
Le.
Ba(Bb—2) >0 2)

for all real. However if a > 0,, then (2) is obviously false for all sufficient small
positive . We see from this that a = 0 i.e. (z9,y) = 0 which implies that zp_Ly Hence
the theorem.

Theorem 8.21. If M and N are closed linear subspaces of a Hilbert space H such that
M LN, then the linear subspace M + N is also closed.

Proof. Let z be a limit point of M + N. It suffices to show that z € M+ N. Let < z, > be
a sequence of points in M + N such that z,, — z. By the assumption that M LN, we see
that M and N are disjoint, so each z, can be written uniquely in the form z,, = x;, + y,
where x, € M and y,, € N. For each €> 0, there exists apositive integer N such that

lzm — zul| <€V m,n>N(€)
= ||Zm _Zn||2 <€2
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H(xm +Ym — (xn _xn)Hz <e?
1 Gom — Xa) + (= y) ||* < €2
[t — X |+ || — X || <€

R

Thus < x, > and <y, > are Cauchy sequences.
But M and N are closed linear subspaces of x H and therefore, complete. Hence
there exists vectors x and y in M and N respectively such that

X, — x. and y, — y Then

z=limgz, =lim(x, +y,) = limx, +limy, =x+y €M+ N.
Thus every limit point of M + N is in and hence M + N is also closed.

Projection Theorem

Theorem 8.22. If M is a closed linear subspace of a Hilbert space H, then

H =M &M+, where M = The set of all vectors orthogonal to M.

Proof. Since M and M~ are orthogonal closed linear subspaces of H, by the previous
Theorem, M + M is also a closed linear subspace of H. Moreover, since M LM, we
have M "M+ = {0}. So it is sufficient to show that H = M + M. If this is not so,
then M + M~ is a proper closed linear subspace of H and therefore 3 a vector zy # 0
such that zgL (M +M L) which is possible only when zg LM and zo L (M +M L) that is
when zo LM and zo € M1+ that is when zg € M- N ML, But this is impossible since
M*+NM*++ ={0}. Hence H = M +M*.

Definition 8.23. A non empty subset {e},e2,...,¢e,,...} of H is called orthonormal.

If (e,-,ej) = {O lfl 7&] Kronoecker Delta d;; = {0 l%]
1 ifi=j 1 i=j

Thus orthonormal set consists of mutually orthogonal unit vectors [ ||e;|| = 1 for
every i ].

If H contains only the zero vector, then it has no orthonormal sets. If H contains a
non-zero vector x and if we normalize x by considering e = ﬁ, then the single element
set {e} is clearly an orthonormal set. In general if {x;} is a non empty set of orthogonal
non-zero vector in H and if x; ’s are normalized by replacing each of them by ¢; = Hj_i\l’
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Then the resulting set {e;} is an orthonormal set. If should be noted that if < x; > is a
non-empty set of mutually orthogonal non-zero vectors in H and if in this set, each x;
is replaced by the corresponding unit vector e; = ﬁ, then the resulting set {¢;} is an
orthonormal set.

Example 8.24. The subset {ej,es,...,e,, } of I} where ¢; is the n-tuple with 1 in the
ith place and 0’s elsewhere, then {ej,e,...,e,, } is an orthonormal set in this space.

Example 8.25. If {¢,} is a sequence with 1 in the nth place, and zero elsewhere, then

{e1,e2,...,e,,} is an orthonormal set in 3.
Theorem 8.26. Let {ej,ez,...,e,} be a finite orthonormal set in a Hilbert space H,
then

|(xei)|” < Jlalf? (1)

ngE

1

and further

(x,ei)eile; (2)

><

1

~

Proof. The inequality (1) follows from the following computation.
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n

— P Y e e - Y. (xney) (rey)

i=1 =

+Y Y (re) (xrej) (eive))
i=1j=1

n
2 2
= [lx[I” = }_ [(x,e1)]
i=1

—_

2 2
| (e[ < |l

Y
-

1

1

Also we observe that

(x,e) ei7ej> = (x,ej) — Z (x,e) (ei,ej)

VR
=
|
et

Hence

x— ) (x,e;)e;Lejforeach j.

-

1

Inequality () is called the special case of a more general inequality known as Bessel’s
inequality.

Theorem 8.27. If < ¢; > is an orthonormal set in a Hilbert space H and if x is any
vector in H, then the set S = {e;; (x,e;) # 0} is either empty or countable.

Proof. For each positive integer n, consider the set

2
X
S, = {e,-;\(x,e,-)|2 > @}

S, can not contain more than n — 1 vectors, since in that case Y.7_, |x, eil* > ||x||* when
p > (n—1) and thus contradicts the above theorem. Also, each member of S is con-
tained in (J;_; S,. But union of a countable collection of countable sets is countable.
Therefore | J;,_; S, and hence S is countable.
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Theorem 8.28. If < ¢; > is an orthonormal set in a Hilbert space H, then

Yl el < lal?

for every vector x € H.

Proof. Let S = {e;;(x,¢;) #0}. If S is empty, then we define ¥ |(x,e;)|* to be the
number zero and the result is obvious in this case. We now assume that S is non-empty.
Then by the above theorem, it must be finite or countably infinite. If § is finite, then it
can be written in the form

S={ey,ez,...en}

for some +ve integer n. In this case, we define ¥ |(x,¢;)|* to be ¥|(x,¢;)|*. The in-
equality to be proved now reduce to

n

2 2
Y (e < x|
i=1
which has already been proved.
Now consider the case

S= [ei7 (x7ei) 7 0]

is countably infinite.
Let the vectors in S be arranged in a definite order.

S:{el,ez,...,en,...}

By the theory of absolutely convergent series, if ¥=°_, |(x,e,)|* converges, then every
series obtained from it by rearranging its terms and also converges and all such series
have the same sum. We, therefore, define ¥|(x,e;)|* to be Yo lx, en)|* and it fol-
lows from the above remark that }."_; |(x,e,) ]2 is a non-negative extended real number
which depends only on § and not on the arrangement of its vectors. We now observe
that

2
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Hence

o)

Z |(x,en)|* < ||x||* for every x € H.

n=1

Theorem 8.29. If < ¢; > is an orthonormal set in a Hilbert space H, and if x is any
vector in H, then

x— Z (x,e)eile;

for each j.

Proof. We set
S= {ei7 ('xaei) 7é 0}

when S is empty, we define Y7, (x,e;) e; to be the vector zero and then the required
result reduces to the statement that x — 0 = x is orthogonal to each e, which is precisely,
what is meant by saying that S is empty. When § is non-empty and finite, then it can be
written in the form.

S=<ep,er,...,ep >

and we define Y (x,¢;) e; to be Y (x, ¢;) ¢; and in that case the required result reduces to
x—Y  (x,e;)e;Lej which has already been proved.

We may assume for the remainder of proof that S is countably infinite. Let the vec-
tors in S be listed in a definite order S =< ey, e2,...,€,,... >. Weput S, —Y " | (x,e;) e
and we note that for m > n, we have

2

m m
2 2 2
1S =Sall"= || X (edei|| Y, [(xen)|” <l

Bessel’s inequality shows that the series Y, |(x, e,,)|2 converges and so < S, > is a
Cauchy in H and since H is complete, this sequence converges to a vector S, which we
write in the form S =Y | (x,e,) en.

We now define 7, (x,e;)e; tobe Y (x,e,) e, (Without considering the effect of

rearrangement) and observe that the required result follows from x — Y7 | (x,e;) e; Le;
and the continuing of the inner product.

<x— Zi (xaei)eiaej) = (x—S,¢5)

= (x,¢j) — (S.ej)
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= (ve)) = (fim 5w
= (x,ej) — lim (Sn,ej)

n—soo

= (xe) = (x.¢j) = 0.

All that remains to show that this definition of ¥ (x,e;)e; is valid in the sense that it
does not depend on the arrangement of vectors in S. Let the vectors in S be rearranged
in any manner;

S:{flafZV"afna"'a}

We put S;, =Y | (x, f;) fi and we see as above that the sequence < f, > converges to
the limit §’, which we write in the form S’ = Y7, (x, f) f, We conclude the proof by
showing that " equals S. Let €> 0 be given and let ny be +ve integer so large that
if n > no, then [|S, —S|| <€, and ||S;, —§'|| <€ and X2, 1, |(x,¢;)|* <€2 . For some
positive integer mq > no, all terms of Sy, occure among those of S, so S,, —S, isa
finite sum of terms of the form (x,e;)e; for e = ng+ 1,n9+2, ... This yields

[0 =Sl* < X Imenl® <€

So

HS;ﬂo _SllmH <€

and
15" = S|| < ||8" = S|l =+ 1ISrg = Sno|| + 1Sy — S| <€ + € + €=3 €
Since € is arbitrary, this shows that §' = .

Definition 8.30. An orthonormal set E = {e¢;} in a Hilbert space H is said to be com-
plete if the only vector orthogonal to all elements of E is zero. Thus an orthonormal
set < e; > is complete if there does not exist a single vector which is orthogonal to all
vectors in E, unless the vector is zero. That is, if it is not possible to adjoin a vector
e to < e; > in such a way that < e;,e > is an orthonormal set which properly contains
<e;>.

Theorem 8.31. Every non-zero Hilbert space contains a complete orthonormal set.
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Proof. Let H be a non-zero Hilbert space and x € H,x # 0. Normalize x by writing
e= ﬁ, then clearly < e > is an orthonormal set. It follows therefore that every non-
zero Hilbert space surely contains orthonormal sets. Consider the collection of all
possible orthonormal sets in H, then the collection has a maximal member M since
by Zorn’s lemma, if P is partially ordered set in which every chain has an upper bound,
then P possesses a maximal element, we shall show that M is complete. Suppose that
y # 0 and y 1 M then put

we observe MU < z > that is also an orthonormal set and thus contradicts the maximal-
ity of M. Hence y 1 M only if y = 0.

Theorem 8.32. Let H be a Hilbert space and let < e; > be an orthonormal set in H.
Then the following conditions are all equivalent to one another:

(1) <e; > is complete

2) xL<e>=x=0.

(3) If x is any arbitrary vector in H, then x =Y (x, ¢;) e;.
(4) If x is any arbitrary vector in H, then ||x||* = ¥ |(x,e;)|*

Proof. (1)=(2): Let < ¢; > be complete, if (2) is not zero, then 3 a vector x # 0, such
that x| < e; >. Define e = ﬁ then the vector e (is a unit vector and) is orthogonal
to each member of < ¢; >. Hence the set obtained by joining e to < e¢; > becomes an
orthonormal set containing < e; >. This contradicts the completeness of < e¢; >. Hence
L<e>=x=0.

(2)=-(3): Suppose that x L < e; >= x = 0. Let x be an arbitrary element in H, then
x—Y (x,e;)e; is orthogonal to each e j for all j and therefore to < e; >. Therefore (2)
implies that

x—Z(x,ei)e,-:O
= x:Z(x,ei)ei

(3)=-(4). Suppose that x is an arbitrary vector in H such that. x — Y (x,e;) ¢;
Then by inner product, we have

1) = ) = (Z ve)en Y (ve))e )
t J
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=Y () {ZW} (eive;)

J

= Z(xvei)m
=Yl

(4)=(1): We are given that if x is an arbitrary vector in H, then ||x||* = ¥|(x,¢;)|*.
Suppose that < e; > is not complete, then it is a proper subset of an orthonormal set
< e;,e >. Since e is orthogonal to all ¢;’s such that ||e|| = 1, we have

lel>=Y |(e;e)?=0= e=0
this contradicts the fact that e is a unit vector. Hence < e; > is complete.

Remark 8.33. If < ¢; > is a complete orthonormal set in a Hilbert space H and let x
be an arbitrary vector in H, then the numbers < x,e; > are called Fourier coefficients
of x, the expression x = Y (x,¢;) e; is called the Fourier expansion of x and equation
%]l = X |(x,¢;)|* is called Parseval’s equation.

Example 8.34. Consider the Hilbert space L, [0,27|. This space consists of all complex
functions defined on [0,27] which are Lebesgue measurable and square integrable in
the sense that

/027t |f(x)|2dx<00.

Norm and Inner product in L, (0,27) are defined by

1= (1 a)

)= | £ 2@

0

1/2

A simple computation shows that the function e for n = 0,41,+2,... are mutually
orthogonal in L,,

/27[ inx —inx 07 m 7£ n
ee T "Mdx = )
0 2n ifm+#n
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It follows from this that the functions e, (n = 0,41,42,...) defined by e, (x) = " /\/27
from an orthonormal set in L;. For any function f in L;, the numbers

Co=(f,en) = Ye ™ dx (1)

1 2
— X
V2arm /0 A
are its classical Fourier coefficients and Bessel’s inequality takes the form.

(o)

2 2n 2
Y 6P [ 1wl <o

n—-—oo

It is a fact of very great importance in the theory of Fourier series that the orthonormal
set < e, > is complete in L. As we have seen that for every f in L,, Bessel’s inequality
can be strengthened to Parseval’s equation:

o0 2n
Y 16l = [ 1P ax

n——oo

The previous theorem also tells us that the completeness of < e, > is equivalent to the
statement that each f in L, has a Fourier expansion

f Z Cne—mx.

2nn__m

Gram-Schmide Orthogonalization Process

Suppose that < x1,x>...,x,,... > is a linearly independent set in a Hilbert space
H. Our aim is to convert it into the corresponding orthonormal set < ey, ea,...,e,,... >
with the property that for each n, the linear subspace of H is spanned by < ey, e, ..., e,,

Our first step is to normalize x| by putting

X1
e = ——

[l ]

Let us consider x; — (x,e;) e;. It is orthogonal to ¢; and we normalize this by putting

x2— (x2,e1)eg
[x2 — (x2,e1) e1]]

e) =
Now e; and e; are orthogonal. Consider x3 — (x3,e1)e; — (x3,e2) e2.. It is orthogonal
to e; and ep. We normalize it by

x3— (x3,e1)e1 — (x3,€2) €2
X3 — (x3,e1) e1 — (x3,€2) €2|

€) =

We see that (x3,e1) —0(x3,e2) = 0. Continuing this process, we obtain an orthonor-
mal set < eq,es,...,ey,,... > with the required properties.
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CHAPTER 9

Conjugate of Hilbert Spaces

In the chapter 4 and 5, we have studied conjugate of sequence spaces and
obtained series representation of some conjugate spaces like /, space. We have also
explained that we can not obtain the conjugate space of l. with the tool developed
in text. But in case of general Banach space the conjugate space of Banach space is
different Banach space with different norm. The most surprising fact about conjugate
space of Hilbert space H is that the conjugate space H* of H is in some sense is the
same as H itself. The theorem identifying H with H* is known as Riesz-Representation
theorem for continuous linear functional on H, /; serves as an instance of this theorem.
Futher in present chapter a correspondance between H and H* is established. Also we
prove Riesz-Representation theorem for continuous linear functional on H. Finally we
show that H™ is itself a Hilbert space and H is reflexive.

Theorem 9.1. Let y be a fixed vector in Hilbert Space H and let f, be a function defined
as fy(x) = (x,y) for every x € H. Then f, is a functional on H and ||y|| = || f;]|.

Proof. Let H be a Hilbert space and H* its conjugate space. Let y be a fixed vector in
H, Define a function f, on H by

fy(x) =(xy),Vx € H.

We assert that f, is linear, for

fy (X1 +X2) = (X1 +x2,y) Vxi+xxeH
= (x1+x) + (x2,y)
:fy<x1)+fy(x2;)

and

fy(ax) = (ax,y)
=a(x,y) =o(fy(x))

Also
A = 16)] < Ixll- Iyl By Schwartz’s Inequality)
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which proves that

1A < 1 (1)

which implies that f is continuous Thus fy is linear and continuous mapping and hence
is a linear functional on H. On the other hand if y = 0, then

£ () =(x0)=0= ||| =ly| =0.
If y # 0, then

5[] = sup {[ £y (x) | [lxl| = 1}

y y
Y\ (B =1
Zfy(uyn)‘ {Beacusel|nll =15
K
T/
S A2 I @

Hence from (1) and (2), we have

1A= vl

Thus for each y € H. There is a linear functional f, € H* such that

[ = 11l

Hence the mapping y — f, is a norm preserving mapping of H into H*,

Riesz-Representation Theorem for Hilbert spaces

Theorem 9.2. Let H be a Hilbert space and let f be an arbitrary functional in H*. Then
there exists a unique vector y in H such that f (x) = (x,y) for every x in H.

Proof. We shall show first that if such a y exists, then it is necessarily unique. Let
y be another vector in H such that f (x) = (x,)'). Then clearly (x,y) = (x,)) i.e.
(x,y—y") =0 for all x in H. Since zero is the only vector orthogonal to every vector,
this implies that y —y' = 0 which implies that y = y.

Now we turn to the existence of such vector y. If f = 0, then it clearly suf-
fices to choose y = 0. We may therefore assume that f # 0. The null space M =
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{x € H; f (x) = 0} is thus a proper closed linear subspace of H and therefore there ex-
ists a non-zero vector yg in H which is orthogonal to M. We show that if is a suitably
chosen scalar, then the vector y = atyg meets our requirements. If x € M, then whatever
values of may be, we have

f(x)=(x,ayy) =0.
We now choose x = yg. Then we must have
£ (30) = (vo, @y0) = @ (y0,0) = &|fyol|*-

and therefore we must choose our scalar ¢ such that

f () f ()
o=
R

o=

ﬂ(yy”‘)z) .yo satisfies the required condition for

each x € M and for x = yy. Each x in H can be written in the form x = m+ Byy,m € M.

therefore it follows that the vector oryg =

For this all that is necessary is to choose f in such a way that f (x— Byg) = f(x) —

Bf (o) = 0 and this is justified by putting § = ;”((y);)) .

Now we show that the conclusion of the theorem holds for each x in H. For this, we

have

f(x) = f(m+Byo) = f (m)+Bf(vo)
= (m,y) + B (vo,y)
=B (m+ Byo,y) = (x,y)

Remark 9.3. It follows from this theorem that the norm preserving mapping of H into
H* defined by y — f, where f, (x) = (x,y) is actually a mapping of H onto H*.

Remark 9.4. It would be pleasant if y — f, were also a linear mapping. This is not
quite true, however, for

fy1+fy2:fyl+fy2 and fay:afy (1)

Also it follows from (), that the mapping y — f; is an isometry, for

[fe= 5]l = [ Fes [l = =y
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The Adjoint of an operator

Let y be a vector in a Hilbert space H and f, its corresponding functional in H*.

Operate with T* on f) to obtain a functional f, = T f, and return to its correspond-
ing vector zin H. There are three mappings under consideration here (H — H* — H* — H)
and we are forming their product:

y—=h—=Tfi=f—z (1)

An operator T* defined on H by
T"(y) =z
is called adjoint of operator 7.

The same symbol is used for the adjoint of 7" as for its conjugate because these
two mappings are actually the same if H and H* are identified by means of natural
correspondence. It is easy to keep track of whether 7" signifies the conjugate or the
adjoint of 7 by noticing whether it operates on functionals or on vectors.

Let x be an arbitrary vector in H. Then we have

(T"fy) (x) = f5(T (x)) = (T (x) ,y)
and
(T fy) (%) = fo(x) = (x,T")

so that
(Tx,y) = (x,T*y) for all x and y.

The adjoint of an operator T is unique, for let 7 be another operator on H. such that

(Tx,y) = (x,T*y) forallx,y € H.
(x,T*y) = (x,T'y)
(

=

= (x,T'y—T")=0.
= T*%-T'y=0

= T*y=T'y VyeH.
= T"=T

We now prove that 7" actually is an operator on H (all we know so far is that it maps
H into itself) for any y and z and for all x in H, we have

(x, T* (ay+ Bz)) = (Tx,ay+ Bz)
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=a(Tx,y)+ B (Tx,y)
= (x5, T*y)+B (x,T*y)
= (x,aT"y)+ (x,BT"y)
= (x,al"y+ BT z)

Hence T* is linear. It remains to show that 7* is cont. To prove this, we note that

2
IT*y[" = (T"y, T"y) = (TT"y,y)
< Ty Iy
< ITIHT Y[yl

which implies that ||T*y|| < ||T||||y|| for all y and therefore
177 < I

Hence T* is continuous. It follows therefore that 7 — T* is a mapping of  (H) into
itself. This mapping is called the adjoint operatoron 3 (H).

Theorem 9.5. The adjoint operator T — T on 3 (H) has the following properties:
D) (+D) =T+ 15

@) (aT)* =aT*

Q) (ML) =TT

@) T =T

S) [T =T]

© |77 =|T|?

for all scalars and 71,7, 7> € B (H).

Proof. To prove (1), we have

(6, (T +T2)"y) = (T + T2) x,)

(
(Tix+Trx,y)
(
= (

Tix,y) + (T2x,y)
x, T1'y) + (x,T5y)
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= (x, Ty +T5y)
= (%, (I +T3)y)
:> (T] + Tz)* = Tl* + Tz*
(2) If x € H, then

(x,(aT)"y) = (aTx,y)
=a(Tx,y)=a(x,T"y)
= (x,al"y) = (x,(aT")y)
=~ (aT)" =ar"

(3) For all x,y € H, we have

(x,(T1h)"y) = (11 T2) x,y)
= (T (Txx) ,y)
= (Tx,T7'y)

= (xT; (T'y))
= (

X (1))
Thus by the uniqueness of adjoint operator.
(M) =TT
(4) For all x,y € H, we have
(6, T7y) = (x,(T7)"y)
=(T"x,y)

= (y,T*x) = (Ty,x)
= T =T

(5) Let y be an arbitrary vector in H. Then

IT*y|)> = (T*y,T*y)
=(TT"y,y)
= |[(TT"y,y)|
<|TT*y| [yl
< T NT* Iyl
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= T <7yl
= T <7

Replacing T be T* in the above inequality, we have

[T < N7~
= TI<|T7

Hence ||T| = |[T].
(6) To prove this equality, we have

17T\ <IN =NTINT] [using (5)]
2
= 7]

and

|Tx||* = (Tx,Tx) = (x,T*Tx)
< [ |7 T x]]
< 17T ] o]l
= |lx|* ||T*T|

T 2
{” al x¢o} <|T°T]

20
]

T 2
= sup{” al x#O}SHT*TH

20
]

= T < |77 (2)

from (1) and (2)

Example 9.6. Show that adjoint operation is one-one onto as mapping of B(H) into
itself.

Solution: Let ¢ : B(H) — B(H) is defined as

o(T) =T* VT € B(H)
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¢ is one-one: Let 7', T2 ¢ B(H), then

¢(Th) = ¢(T2)
=T =T
= (T7)" = (1)«
= Tl** — TZ**
=T =17.

Hence ¢ is one-one.
¢ is onto: Let T € B(H) then T* € B(H) and we have

Hence, the mapping ¢ is onto.

Self-Adjoint Operator

Now we study some special types of operators defined on a Hilbert space. The
definitions and properties of these operators depend mostly on the properties of the
adjoint of an operator.

Definition 9.7. An operator A on a Hilbert space is said to be self-adjoint if it equals
its adjoint i.e. if A = A*.
We know that 0* =0 and 1* = 1, so zero and I are self adjoint operator. If is real

and A| and A, are self-adjoint, we claim that A| +A; and oA are also self-adjoint. We
establish these facts in the form of a more general theorem:

Theorem 9.8. The self adjoint operators in B (H) form a closed real linear subspace of
B(H) and therefore a real Banach space-which contains the identity transformation.

Proof. If A| and A, are self-adjoint and if o and f3 are real numbers, then

(0A; +BA2)" = (@A) + (BA2)"
=0A] + BA;
= 0A] + BA.
[Since a, B are real and A7 =A,A; = A%,

= aA| + BA; is also self-adjoint. Therefore set of all self-adjoint operators A in
B (H) is its linear subspace.
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Further, if < A, > is a sequence of self-adjoint operators which converges to an
operator A, then it can be seen that A is also self-adjoint. In fact

[A—A"[| = |A-A,+A, — A, + A, A"
< [|A = Al + [|An — ALl + (|4, — A7l
= A —Aull+ | (4n —An)"]|
= [|[A = Au| + |An — Al [using [[A"]| = [|A[]]
=2||A,—A| — 0.
= A—A"=0s0o A=A"

Also I* = 1.

Hence the set of all self-adjoint operators in B (H ) form a closed linear subspace of
B(H) containing identity transformation and therefore is a real Banach space contain-
ing the identity transformation.

Theorem 9.9. If A| and A, are self-adjoint operators on H, then their product

A1 Aj is self-adjoint iff AjAy = AsA;.

Proof. Suppose first that AA; is self-adjoint, then
A1A; = (A1A2)" = A5AT = ArA,

Conversely suppose that AjA; = AA;.. Then
(A1A2)" = A5A] = AA| = A1A;

and therefore A{A; is self-adjoint.

Theorem 9.10. If T is an arbitrary operator on H, then T = 0 < (Tx,y) = 0 for all x
and y.

Proof. If T = 0, then (Tx,y) = (Ox,y) = (0,y) = O for all x,y € H. On the other hand

if (Tx,y) =0 for all x and y in H, then in particular (7x,Tx) = 0 for all x € H which
means that 7x = O for all x € H and therefore T = 0.

Theorem 9.11. If T is an operator on H, then T = 0 iff (Tx,x) = 0 for all x.
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Proof. If T = 0, then
(Tx,x) = (0x,x) = (0,x) =0 VxeH.

Conversely suppose that (7x,x) = 0 for all x € H. We shall show that 7 = 0, which
holds if (Tx,y) =0 for all xy € H. So it suffices to prove that (Tx,y) =0 forall x,y € H.
The proof of this depends on the following identity.

(T (ox+By), ox+ By) — |at* (Tx,x) — |B]* (Ty,y) = aB (Tx,y) + &P (Ty,x)
(D)

By our hypothesis, the left side of (1) and therefore the right side as well equals zero
forall @ and B. If we put & = 1,3 = 1 in (1), we get

(Tx,y) + (Ty,x) =0 (2)
and if we put ¢ =i and B = 1, we get
i(Tx,y)—i(Ty,x)=0
and therefore
(Tx,y) = (Ty,x) =0 3)
Adding (1) and (3), we have
(Tx,y) =0forallx,y € H.

Hence T' = 0.
Theorem 9.12. An operator T on H is self adjoint iff (7'x,x) is real for all x.

Proof. If T is self adjoint, then

(Tx,x) = (x,Tx) = (x,T*x) = (Tx,x)

shows that (T'x,x) is real for all x, On the hand, if (7'x,x) is real for all x, then

(Tx,x) = (Tx,x) = (x,T*x) = (T"x,x)
= (T—-T")x,x)=0
T-T"=0
T=T"

\
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Definition 9.13. If A| and A; are self-adjoint operators on a Hilbert space H, we write
Al <Ay if (Alx,x) < (Azx,x) forall x € H.

Theorem 9.14. The real Banach space of all self-adjoint operators on H is a partially
ordered set whose linear structure and order structure are related by following proper-
ties:

(1) IfA; <A, thenA| +A <A, +A for every A.

(1) IfA; <Az and o > 0, then A < 0As.

Proof. Suppose B is the Banach space consisting of all self-adjoint operators on H. We
define relation < on B by

A <Ay if (Ajx,x) < (Azx,x) VxeH,A,Ay €B.
Then
(i) (Ax,x) = (Ax,x)Vx € H,A € Bimplies A < AVA € B. Hence < is reflexive.
(i1) If A1,A, € Bsuchthat A} <Aj and A} <A, then

A; <Ay = (Ax,x) < (Apx,x)
Ay <A = (Axx,x) < (Arx,x)

Combining these two expressions, we have

(A]X,X) = (Azx,X)
= ((A]—AZ)X,X>ZOZ>A1—A2:O
= A=A

Therefore the relation < is anti-symmetric.
(iii) Let A1,A7,A3 € Bsuchthat A; <Aj and A, < As. Then

A; <Ay = (Ax,x) < (Apx,x)
A <Az = (Axx,x) < (Asx,x)

On both of these yield

(A1x,x) < (Azx,x)
= A <A;z.

Thus the relation is transitive.
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Hence < is a partially ordered relation. Now we prove the relation (1) and (2)

Al <Ay = (Apx,x) < (Axx,x) (1)
= (A1x,x) + (Ax,x) < (Axx,x) (Ax,x)
= (A1 +A)x,x) < ((Ay+A)x,x)
=A1+A<A,+A
Al <Ay = (A1x,x) < (Axx,x) (2)
= a(Ax,x) < a(Ax,x)
= (aA1x,x) < a(Azx,x)
= ((aA)x,x) < ((0tA2) x,x)
= oA < a0AVo > 0.

Hence theorem.

Positive Operator

Definition 9.15. A self-adjoint operator A is said to be positive if A > 0, i.e. (Ax,x) >0
for all x.

It is clear that 0 and I are positive, as are 7T and TT* for an arbitrary operator 7.

Theorem 9.16. If A is a positive operator on H, then / 4- A is non-singular. In particular
I+ T*T and I + TT* are non-singular for an arbitrary operator 7" on H.

Proof. We must show that / 4+ A is one to one onto as a mapping of H into itself. First
of all we observe that

(I+A)(x)=x+Ax=0
= Ax = —x = (Ax,x) = (—x,x) > 0.
= —|x|*>0=x=0,VxeH.

Then

(I+A)(x)=(I+A)y=(I+A)(x—y)=0.
=>x—y=0=x=y
= [+ A 1is one-to-one.
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It remains to show that / 4 A is onto. It is sufficient to prove that range of / + A equals
H. Let M be the range of / +A. Then

(1 +A) x> = ||x 4+ Ax|* = (x + Ax, x + Ax)
= (x,x) + (x,Ax) + (Ax,x) + (Ax, Ax)
= ||x||2 +2 (Ax,x) + ||AxH2 [since (Ax,x) is real]
> |lx|)?

= KPP < E+A) )

By this inequality and the completeness of H, M is complete and therefore closed. Sup-
pose that M C H. Then a non-zero vector xo LM such that

(x0,(I+A)x0) =0
= (x0,%0) + (x0,Axp) =0
= |lxol|* + (Ax0,x0) =0
= |lxoll* + (Axo,x0) <O
= x0=0.
which contradicts the fact that x( is a non-zero vector.

Hence M = H. It follows therefore that I + A is one-to-one and onto and hence
non-singular.

Normal Operator
Definition 9.17. An operator N on a Hilbert space H is said to be normal if it commutes

with its adjoint that is NN* = N*N.

Theorem 9.18. The set of all normal operators on H is a closed subset of B(H) which
contains the set of all self-adjoint operator and is closed under scalar multiplication.

Proof. If N is a self-adjoint operator, then
N*=N= NN"=N"N.

Thus it follows that every self-adjoint operator is normal. Therefore the set M contains
the set of all self-adjoint operators.
Let o be a scalar and N a normal operator, then

(aN) (aN)" = (aN) (aN®)
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oo (NN¥)
0@ (N*N)

= (aN”) (aN)
= (aN)" (aN)

Now consider the set M of all normal operators on H. It is clearly a subset of B (H).

N
N

To show that it is closed, it is sufficient to prove that every Cauchy sequence {N;} of
normal operators on H converges to a normal operator. Due to the completeness of
B (H) this sequence converges to some operator N we shall show that N is normal.
Since N; — N*, we have

INN* —N*N|| = ||[NN* — Nk N + NyNi — N Ny + NNy — N*N||
< |INN = NeN[| 4 [[Nely = NiNie [+ [N Nie = NN ||
= [NN* = NeN*[[ + [[NgN, = N¥[| = 0
< [NN* = NeN™|| + [[NgNe = N¥[| = 0
which implies that

NN*—N*N=0
= NN"—N'N

therefore N is normal.

Theorem 9.19. If N; and N, are normal operators on a Hilbert space H with the prop-
erty that either commutes with the adjoint of the other, then Ny + N, and Ny N, are
normal.

Proof. We are given that

NlNi)< ZNTNl,Nsz :N;Nz
NiN; = N;Ni,N,N{ = N{ N,

We show first that Ny + N, is normal. For this, we have.

(N1 —l—Nz) (Nl —i—Nz)* = (N1 +N2) (Nik —I—N;)
= N{N; +N;N; + NN, +N;N,
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= (Nf +N;3) (N1 +M2)
= (N; +N,)" (N1 +N2)

which shows that N; + N, is normal.
Similarly

(N\N,) (N1N2)™ = (N1N2) (N3 NY)
= N; (N,N7) Ny
=N (N;N,) Ny
= (N\N;) (N1N7)
= (N3N1) (NTN2)
= N; (NIN{) N,
= (N7 (N{N1) N>
= (N2Ny) (N N2)
= (NiN2)" (N, V2)

= NN, is normal.

Theorem 9.20. An operator on a Hilbert space H is normal if and only if

|IT*x|| = || Tx|| for everyx.

Proof. T is normal iff

TT =TT < TT" —T*T=0
(TT*—T*T)x,x)=0 Vx€eH

[since an operator T on H is zero iff (Tx,x) =0 ]
(TT*x,x) = (T"Tx,x) Vx€ H
(T*x,T*x) = (Tx,Tx) Vx€ H
|T*x|* = | Tx|)* Vx € H
|\ T*x|| = ||Tx|| Vx € H

4

(I

Theorem 9.21. If N is a normal operator on H, then

IN?]) = v 2
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Proof. Since N is normal, we have

INx|| = [[Nx]|  VxeH (*)
= [|N?] = sup {[[N2x]|s 1] < 1}
= sup {||[N(Nx) || s [|x[| < 1}
= sup{[|N*(Nx)[|: [lx]| < 1}
= sup {[|N*Nux||; [|x[| < 1}
[by the property of adjoint operation on 3 (H)]

Remark 9.22. For an arbitrary operator 7 on a Hilbert space, we form

g THTT-T
1= 2 Y 2= 2

It can be shown that A| and A are self adjoint and they have the property that

T=A1+iA;
In fact
a=tairy=La i
L) 2
T+T*
= —; =A| = Aj 1s self-adjoint
and
AS = 1(T T*)*— 1(T ")
27 2 2
1
=—(T-T")=A
5 ) =42

= Aj 1s self-adjoint.
T+T7T* T-T*
Al +iA, = —; + 5 =T

Theorem 9.23. If T is an operator on H, then T is normal < its real and imaginary
parts commute.

Proof. If A| and A, are real and imaginary parts of 7 so that T = A| + iA, and
T* =A| —iA, ,then

TT* = (A1 +iA2) (A] —iAy) = AT+ A3 +i(ArA] —A| — A)
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and
T*T = (A} —iA2) (A] +iA2) = A2+ A3 +i(A1A; — ArA;)
It is clear that if AjA, = A»A|. Then TT* =T*T.
Conversely T is normal iff
TT =TT
& AjAy—ArA| =AA1 —AA;
& 2A1A; =2A5A,
& AjAy =AA .

Unitary Operator

Definition 9.24. An operator U on H is said to be unitary if UU* = U*U = 1.

Theorem 9.25. If T is an operator on H, then the following conditions are all equivalent
to one another.

() T*T =1
(2) (Tx,Ty) = (x,y) forall x and y
3) ||T (x)|| = [|x|| for all x.

Proof. (1)=(2).
If T*T =1, then

(Tx,Ty) = (x, T"Ty) = (x,1y) = (x,y)

for all x and y
(2)=(3). If (Tx,Ty) = (x,y) = ||x||* for all x and y, then taking y = x, we have
(Tx,Tx) = (x,%) = ||
2 2

= (T)[]" = I«

= [T =l vx
(3)=(1) when

1T ) = [l
= T =l
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= (Tx,Tx) = (x,x)

= (T"Tx,x) = (Ix,x)

= (T'T-Ix,x)=0 VxeM
= T'T—-I1=0

= T'T=1I

Theorem 9.26. An operator 7 on H is unitary iff it is an isometric isomorphism of H
onto itself.

Proof. If 7 is unitary, then we know from the definition that it is onto.
Moreover since T*T = I, by the previous Theorem.

IT @) =[xl YxeH.

Hence T is an isometric isomorphism of H onto itself.
Conversely if T is an isometric isomorphism of H onto itself, then T is a one-one
mapping onto H such that

IT ) = llxll VxeH

and so by the above theorem, T*T = 1.
Since T is an isometric isomorphism of H onto itself, T ! exists and then

T"T=I=T*=T"".
Also we note that

TT =TT ' =1
= T'T=TT" =1
= T is unitary.
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CHAPTER 10

Projections and Orthonormal Sets in Hilbert Spaces

We know that a projection on a Banach space B is an idempotent operator on Bi.e. an
operator P with the property P> = P. It was proved that each projection P determines
a pair of closed linear subspaces M and N, the range and null space of P such that
B =M & N and also conversely that each such pair of closed linear subspaces M and N
determines a projection P with range M and null space N.

The structure which a Hilbert space H enjoy in addition to being a Banach space
enables to single out for special attentions those projections whose range and null space
are orthogonal.

We start the chapter with following theorem:

Theorem 10.1. If P is a projection on H with range M and null space N, then M
LN < P is self-adjoint and in this case N = M.

Proof. Since P is projection on a Hilbert space H with range M and null space N, we
have H =M @& N, so each vector z € H can be written uniquely in the form z = x+y,
xeM,yeN.

If M_LN, then (x,y) = (y,x) = 0. Therefore for all z in H, we have

(P'2,2) = (z,Pz) = (z,) = (x +y,%)
= (%,x) + (nx) = (x,x).
and
(Pz,2) = (x,2) = (x,x+y) = (x,x) = (x,y) = (x,x)

= (P'z,2) = (Pz,2)

= [(P"=P)z,27]=0

= P"—P=0=P =P
Conversely suppose that P* = P, to prove that M LN, it is sufficient to show that if x

and y are arbitrary elements of M and N respectively, then (x,y) = 0.
In fact we have,

(x,y) = (Px,y) = (x, P"y) = (x, Py)
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= (x,0) =0. {Nisthenull spacey € N, P(y) =0}

Hence M_LN.

It remains to prove that if M_LN. Then N = M*. It is clear that N C M~ and if N
is a proper subset of M~ and therefore a proper closed linear subspace of the Hilbert
space M L there exists a non-zero vector zg in M+ such that 7o LN.

Since zo LM and zo LN and H = M @& N. It follows that zo L H. This is impossible
and hence N = M.

Definition 10.2. A projection on H whose range and null space are orthogonal is called
a prependicular projection.

The only projections considered in the theory of Hilbert spaces are those which are
perpendicular.

In the light of above theory an operator P on a Hilbert space H is a perpendicular
projection if P = P and P* = P.

Moreover P is projection on M only if (I — f) is a projection on M.

Theorem 10.3. If P and Q are the projections on closed linear subspaces M and N of
H. Then MIN < PQ=0< QP =0.

Proof. If M LN, then N C M. Since Q is a projection on N,Qz is in N for each z € H.
Therefore

Qz€ M+ = P(Qz) =0 = PQ(z)=0=PQ=0.
Moreover taking adjoint, we have
PO=0= (PQ)* =0

Hence M_LN = PQ =0QP = 0.
Conversely suppose that QP =0

= PO =0, thenforxeMory€eN,
= (x,y) = (Px,Qy) = (x,P"Qy)
= (x,PQy) = (x,0.y) = (x,0) =0.

Hence M_LN.
Therefore QP =0=PQ =0= M _LN.
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Definition 10.4. Two projections P and Q are orthogonal if PQ = 0.

Theorem 10.5. If P, P>, ..., P, are the projections on closed linear subspaces M|, M>, ...
of H, then P = P, + P, + ...+ P, is a projection < P/s are pairwise orthogonal (in
the sense that P;,P; = 0 whenever i # j) and in this case, P is the projection on M =
M +M,+...+M,.

Proof. Each P; is a perpendicular projection therefore P = P, = Pl-2 fori=1,2,...,n.
Then

P=P+P+...+P) =P +...+P
=P+Ph+...+P+=P

Hence P is self-adjoint. Now P is a projection i # j it is idempotent.
If P;’s are pairwise orthogonal, then

PP; =0 fori# j
Hence

PP = (PiPs+...+P,)?

n
=Y PP+2Y) PP,
i=1 i#1
n
=Y X=pP [P’ =Pand PiPj=0]
i=1
=P

= P isidempotent.

Thus we have proved that if P are pairwise orthogonal, then P is a projection.

To prove the converse we assume that P is idempotent. Let x be a vector in the
range of P, so that P; (x) = x.

Then
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Since
2 2
[1x[l* = [|Px+ (7 = P) x|
— ||Px||*+||(I+ P)x||* [Pythagorean theorem]
2 2
= P& <«
Hence

Y. 120’

n
el < Y (12 ) < el =[xl =
j=1 j=1

n
Y [P = (1P @) = x>
j=1

[Since [|; (x)[| = [}]].

which implies that || P; (x)|| = 0 for j # .

Now P; (x) = 0 = x € Null space of P; for j # i. Thus range of P; is contained in
the null space of P i.e. M; C MjL for every i # j and this means that M; LM for i # j.
Hence [by the preceding theorem] P;’s are pairwise orthogonal.

We now show that P is a projection on M. Firstly we observe that since ||P (x)|| =
||x|| Vx € M;,, each M; is contained in the range of P and therefore M = Y'' | M; is also
contained in the range of P.

Secondly if x is a vector in the range of P, then

x=Px=(Pl+P+...+P)x.
=Pix+Px+....+Px

is evidently in M = }""" | M; since Pix € M;.
Hence the theorem.
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Definition 10.6. A closed linear subspace M of a Hilbert space H is said to be invariant
under an operator 7 on H if T (M) C M.

If both M and M~ are invariant under T, then we say that M reduces T (or that T is
reduced by M).

Theorem 10.7. A closed linear subspace M of H is invariant under an operator T <> M*
is invariant under 7*.

Proof. Suppose first that M is invariant under an operator T, then T (x) € M for all
x € M. We shall show that M~ is invariant under 7*. If y is any vector of M.
Then

(x,y) =0 forall x € M.
(x,T*y) = (Tx,y) =0 since Tx € M.
= T*ye M forall yye M+

Hence M is invariant under 7*.

Conversely suppose that M is invariant under 7*. Then M is invariant under (T*)" =
T But M+t =Mand T** =T.

Therefore it follows that M is invariant under 7.

Theorem 10.8. A closed linear subspace M of H reduces an operator 7' < M is invari-
ant under both 7 and T*.

Proof. By definition we know that M reduces T
& M is invariant under T and M~ is invariant under T
< M is invariant under 7" and M is invariant under 7* [By previous Theorem].
< M is invariant under both 7" and T*.

Theorem 10.9. If P is a projection on a closed linear subspace M of H, then M is
invariant under an operator 7 < TP = PTP.

Proof. If M is invariant under 7" and x is an arbitrary vector in H, then
xeH=Px)eM=T(P(x))CM

= TP(x)eM
= P(TP(x))=TP(x)
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= ({PTP)(x)=TP(x)
= PTP=TP

Conversely if TP = PTP and x is a vector in M then

But TP (x) € M, therefore T (x) € M.
Hence M is invariant under 7.

Theorem 10.10. If P is the projection on a closed linear subspaces M of H, then M
reduces an operator T < TP = PT.

Proof. By a result proved above, M reduces T iff M is invariant under 7" and
T*iff TP =PTPand T*P=PT*P

< TP =PTP and (T*P)* = (PT*P)*
< TP =PTP and
PT™ =pP*T"P" = TP=PTP

and PT =PTP[.’P*=Pand T* =T]

& TP=PT.

Reflexivity of Hilbert space

Let H be a Hilbert space with inner product denoted by (y,x). The dual (conjugate
space) H* is then a Hilbert space with inner product given by (x*,y*) = (y,x) for each
x* and y* in H* where x — x* and y — y* under the mapping H — H*.

We now establish the following result concerning the reflexivity of a Hilbert space.

Theorem 10.11. Every Hilbert space is reflexive.
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Proof. Let H* denote the dual space of a Hilbert space H. Consider the mapping T
defined by

T:H— H*
y—=>Ty=f (1)

where the bounded linear functional f is, for any x € X, given by

(Ty) (x) = f (x) = (x,y) 2)
Suppose now that under 7',
yi— fi
and
2= f

andlety; — f1 — g
Thus

g(x) = (x,y1+y2)
= (x7y1) + (X,yz)
= f1(x) + f2 (%)

and we conclude that
T(i+y2)=T01)+T (y2)
Showing that 7" is additive. Now suppose under 7,y — f. and for a scalar «, let
T (ay) = h, then
y(x) = (x,0y) =a(x,y) =af (x)
therefore

T (ay) =aT (y)
Showing that 7 is conjugate linear. Also, by Riesz-Representation theorem for bounded
linear functionals on a Hilbert space, to each bounded linear function f, there exists a
unique y, y € H such that for every x € H, f (x) = (x,y) and || f|| = ||y|| . In view of this
the mapping 7 is onto and further

IF T =Tyl = () (v = Ty =f)

Therefore T is norm-preserving mapping or isometry. As we know that an isometry
is always a 1 — 1 mapping.
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Thus we have, the mapping 7 constitutes a 1 — 1 onto isometric, conjugate linear
mapping from a Hilbert space onto conjugate space. Thus we see that Hilbert space
and their conjugate spaces are indistinguishable metrically and almost indistinguishable
algebraically. [Almost because T is conjugate linear]

Let x* be a bounded linear functional on H and x € H Denote x* (x) = [x,x*]. Con-
sider the mapping

J:H— H'H"

x—x
where for defining equation for Jx we have for any x € H*
X () =[x = x] =X (x) (3)
We now show that x** is a bounded linear functional. Let x* € X*, then
o () [ = e )| < o]l
= [ < {lx]] (*)

Further if x = 0, then
0<|x™| <.

And consequently [|x**|| = ||x|| =0
If x is a non zero vector, then there must be some bounded linear functional xg with
norm 1 such that x (x) = ||x||. But

X[l = sup e (x7))|
[l =1
= sup |x" (x)]
[l =1
> " () = [|x] (*%)
Thus [}x™[} = |l

= J is an isometry. Since isometry is always a 1 — 1 mapping, it follows that J is
an isomorphism. It remains to show that J is onto. To this end, let f be an element of
H**. We must find z € H such that Jz = f. For T defined in (1) consider the functional
g defined by

g:—>f
x— f(T(x))
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For x1x, € H, consider

x1)+g(x) = g is additive.

Hence g is linear.
Further since T is an isometry, we have

()l = [FT G| = £ (@) < I£1) 17
= IA1 I

Thus g is bounded.
By Riesz-Representation Theorem, 3 z € H such that for all x € H,

g(x¥) = (x2)

or

~

(Tx) = (x,2)
= f(Tx)=(zx)

On the other hand by the definition of J and T (using (2) and (3)

(J2) (Tx) = 27 (Tx) = Tx(2) = (2,%)

4)

)

(6)

Thus (5) and (6) yield that Jz and f agree on every member of H*. Hence they are same.

This completes the proof.

Example 10.12. Show that a Hilbert space is finite dimensional < every complete

orthonormal set is a basis.
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Solution. Let H be a finite dimensional Hilbert space of dimensional n. Let § =< ¢; >
be a complete orthonormal set in H. Then we have to show that § is a basis for H.
Since S is an orthonormal set, therefore it is linearly independent.

Also S must be a finite set because it can not contain more than n vectors. [since H is
finite dimensional]. Now let x € H. Since S is a complete orthonormal set, therefore we
have x = Y, < (x,e;) e;. Thus each vector x in H can be written as linear combination
of vectors in the set S and so S generates H. Therefore S is a basis for H. [Thus in a
finite dimensional Hilbert space of dimension n every complete orthonormal set must
contain exactly n vectors].

Conversely suppose that every complete orthonormal set in a Hilbert space H is a
basis for H. Then to show that H is finite dimensional. Let S be a complete orthonormal
set in H. Then by hypothesis S is a basis for H. We are to show that § is infinite set.
Suppose is infinite. Then we can certainly extract a denumerable sequence of distinct
points of S

€1,€2,€3,...,€yp,...

Consider now the series
i :
—e
2 n
n=1 n

Since the series )~ 4 is convergent =, the series )" 2en is convergent [by the
result that. Let H be a Hilbert space and let § =< €1,€2,€3, ...,én,... > be countably
infinite orthonormal set in H. Then a series of the form Y’ | ot,e, is convergent iff
‘O‘n|2 <o
Thus the series )., 26,, must converge to some vector x in H. Since S is a basis
for H, therefore we can wrlte x as some finite linear combination of vectors in S. Let

xX=0oyey+...+oyuey

where ey,...ey € S and, o, ..., 0, are scalars. Let j be any positive integer having
value different from the values of indices A, ..., u We have

(v.ej) = (onen + ...+ ouepe;)
(x,ej) = ((X;Le;L —|—...—|—Ocﬂeu,ej) =0.

Also

o 1 o
xej Z_ze”ej' x:Z
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n2

Thus we have = niz = 0 which is not possible. Therefore the set S must be finite and H
is finite dimensional.

Theorem 10.13. Prove that any two complete orthonormal sets in a Hilbert space H
have the same cardinal number.

Proof. Let S| and S be two complete orthonormal sets in a Hilbert space H.
Suppose one of these sets is finite. Let S| be finite and S| = {ey,e2,...,e,} ..

Since S; is an orthonormal set, therefore it is linearly independent. Also since S is
complete, therefore if x € H, then we have

n
xX= Z (x,e;) e
i=1

Thus S generates H. Therefore S is a basis for H and so H is finite dimensional and
dim H = n. Since S, is also a complete orthonormal set in H, therefore S must also be
a basis for H. Since S1 and S, are both bases for H, therefore they must have the same
number of elements.

Now let us suppose that both S| and S, are infinite sets. Let x € S and let S, (x) =
{y:y €S, and (y,x) # 0}. Then S, (x) is a subset of S, and thus S, (x) is a countable
set . Let z be any arbitrary member of ;. Since S; is a complete orthonormal set and
therefore by Parseval’s identity, we have

I2? = Y Iz

X€S|

But z € §, = z is a unit vector.
Therefore we have

2
1= ) @)
XES
From this relation we see that there must exist some vector x € S| such that (z,x) # 0.
Then by our definition of S> (x), we have z € S (x). Thus z € S, = z € S> (x) for some
x € §;. Therefore we have

Spa={J S2(x) (1)

XES|
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Let ny,ny, be the cardinal numbers of Sy, S, respectively. Since the cardinal number of
the union of an arbitrary collection of sets can not exceed the cardinal number of index
set, therefore ny, < ny . Interchanging the roles of S| and S> we get n; < ny. Therefore
we have n| = ny.

Remark 10.14. Let S be a complete orthonormal set in a Hilbert space H. Then the
cardinal number of S is said to be the orthogonal dimension of H. If H has no complete
orthonormal set i.e. if H is the zero space, then the orthogonal dimensional of H is said
to be zero.

Definition 10.15. Operators S and T are said to be metrically equivalent if ||Sx|| = ||Tx||
VxeH.

Theorem 10.16. Operators S and 7 are metrically equivalent if $*S = T*T

Proof. Let S and T be metrically equivalent

ISx|| = |Tx|| VxeH.

& (8*Sx,x) = (Sx,8x) = ||Sx||* = || Tx|*
= (Tx,Tx) = (T*Tx,x)

= (($*S—T'T)x,x) =0

=S'S-T*T=0

= S*'S=T"T.

Theorem 10.17. An operator 7 is normal iff 7 and 7" are metrically equivalent.

Proof. Suppose T is normal = T*T = TT* and so by the above theorem, 7* and T are
metrically equivalent.
Conversely suppose that 7 and T* are metrically equivalent

= |T°x[| = [ITx]
= T'T=TT"

= T is normal.

Finite Dimensional Spectral Theory

First we give basic definitions and results.
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Definition 10.18. Let 7 be an operator on a Hilbert space H. A vector x € H is said to
be a proper vector (eigen-vector, latent vector or characteristic vector) for the operator
T if (i) x # 0 and (ii) Tx = ux for a suitable scalar u. if also Tx = vx, then Tx = ux and
Tx = vx implies (u —v)x = 0. Since x # 0, it follows that u = v. Thus a proper vector
x determines uniquely the associated scalar u.

Definition 10.19. A scalar u is said to be a proper value (Eigen value, latent root or
characteristic root(value)) for the operator 7 in case there exists a non-zero vector x
such that Tx = ux,.

Thus u is a proper value for 7 if and only if the null space of (T — ul) is not equal to

(o).

Remark 10.20. If the Hilbert space H has no non-zero vector at all, then 7 certainly
has no eigen vectors. In this case the whole theory collapses into triviality. So we
assume throughout this lesson that H # {0}.

Theorem 10.21. If 7 is a normal operator, x is a vector and u is a scalar, then 7Tx = ux
if and only if 7*x = ux. In particular

(1) xis a proper vector for T if and only if it is a proper vector for 7*.

(2) uis a proper value of T if and only if it & is a proper value of T*.

Proof. By virtue of normality, 7*T = TT"*.
Since

(T—ul)"=T" —ul"=T"—1ul.
we have
(T—ul)"=T"—ul"=T"—1ul.
and
(T —ul)" (T —ul) = (T* —ul) (T —ul)
Since TT* = T*T, it follows that T — ul is normal. Hence
(T = ul)xl| = [|[(T — ul)" x|

which in turn implies that 7x = ux if and only if 7*x = ux. This proves (1) and (2).
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Remark 10.22. Let H be a classical Hilbert space and x1,x3, ... an orthonormal basis
for H. Then one sided shift operator 7' defined by Tx; = x| has no proper value.

Theorem 10.23. Let 7 be a normal operator on a Hilbert space H. Then there exists
on orthonormal basis for H consisting of eigen vectors of 7.

Proof. Let A be an eigen value of T and suppose x is corresponding eigen vector. Thus
we have Tx = Ax. Since x can not be zero, we can choose x; = H;_H’ If the dimension
of H is 1, then we are done. If not, we will proceed by induction. We shall assume that
the theorem is true for all spaces of dimension less than H and then show that it follows
for x from this assumption.

Letting m = [x;] = {ax;,a € F}. The space spanned by x;, we have the following
direct sum composition of H:

H=Mao®M™"

We must have then dim M+ < dim H. Since x; is an eigen vector of 7', we have Tx| =
Ax; and therefore it is clear that M is invariant under 7. But we know by Theorem
1 that eigen vectors of 7 must also be eigen vectors for 7*. Therefore M is invariant
under 7 also. Hence M is invariant under 7** = T. Thus we have

(i) M is invariant under 7.

(ii) M* is invariant under T.

Thus we can say that M reduces 7.

Consider now the restriction of T to M~ denoted by T /M* where T /M* : M+ —
M*. Since T is normal, T /M~ is also normal since M reduces T. Now since
dimM~' < dimH, we can apply the induction hypothesis to assert the existence of an
orthonormal basis for M consisting of eigen vector for T /M~*;{x,x2,...,x,} . Eigen
vectors of T /M~* however must also the eigen vector of 7. Hence for the entire space,
we have (x1,xp,...,x,) as orthonormal basis of eigen vectors of 7. Hence the result.
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Spectral Theorem for Finite Dimensional spaces

Definition 10.24. The set of eigen values of an operator 7 is called its spectrum or
point spectrum and is denoted by (7).

Statement of Spectral Theorem

Theorem 10.25. Let A;, A;,. .., A, be the eigen values of an operator T and let M1, M>, ..., M,
be their corresponding eigen spaces. If P, P, ..., P, are the projections on these eigen
spaces, then the following three statements are equivalent to one another.

@)) Ml{s are pairwise orthogonal and span H.

2) Pi,s are pairwise orthogonal, thatis P,P;j =0 fori# jand I = P+ P+ ...+ P, and
also

T =MP+MP+...+1,PA,

(3) T is normal.

Proof. (1)=-(2), by (1) every vector x in H can be expressed uniquely in the form
X=Xx1+XxX2+...+Xxp, 4)

where x; € M; for each i and x/s are pairwise orthogonal. Further (1) M; LM;,i # j then
M; C M;. Then since Pjx = M| for every x, we have P,Pjx = 0 for any x and P,P; =0
for i # j. This proves that P;’s are pairwise orthogonal.
Applying P; to both sides of (4), we have
Pix = Px1 + Pxo+... + Pixy
=0+0+...+Px;+...4+0

=x; forany i.
Hence we can write any x as
x=Px+Px+...+Px

or Ix = Pix+ P,x+ ...+ P,x for identity operator 7.
orlx=(Pl+P+...+Px)x
Since this is true for any x € H, we conclude that

I=P+P+...+P,
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Further applying T to x in (@), we have

Tx=Tx1+Txy+...+Tx,
=MP+MP+...+A,P,
= ()LIPI + AP+ ... +7LnPn)x

for every x and so

T =MP+P+...+A,P,

)

The representation (5) for an operator 7', when it exists is called the Spectral Represen-

tation or Spectral form of 7.
(2)=-(3), it follows from

T=MP+MP+...+A,P,
That

T* = A\ P+ A2Ps + ...+ AP
= Ilpl +IZP2 +... —I—InPn

Now since by (2) P,P; = 0 for i # j, we have

TT* = (MPI+MPs+ ...+ LP) (AP + AP+ ...

= |MPPE+ ...+ | AP P2
— |MPPP+ PP+ A Py

and similarly
w112 2 2
T°T = |7Ll‘ P1+|),2| P2—|—...—|—M,n‘ P,
and therefore
TT*=T"'T.

Proving that T is normal.
(3)=-(1): Suppose that T is normal.

We shall prove first that M; LM for i # j. Given x; € M;,x; € M;,, it is sufficient to
show that x; L x;. Since x; € M;,x; € M;,, we have Tx; = Aix;, Tx; = Ajx;.
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Since T is normal Tx; = A;x;, Tx; = A;x; and so
(T)C,',Xj) = (x,-,T*xj)

or (lixi,xj) = (x,-,l,-xj)

or ll' (x,',x]'> = lj (xi,xj)

or (Aj,lj) (X,‘,Xj) =0

Since A; # A, it follows that (x,-x j) = 0 and hence x; Lx;. This proves that M; LM;
for i, j and so M;’s are pairwise orthogonal. It remains to prove that 7 is normal,
then M;’s span H that is. We have just H = M| + M + ...+ M,,. Shown that les
are pairwise orthogonal. This implies that P;’s are pairwise orthogonal. Therefore
M =M+ M, + ...+ M, is a closed linear subspace of H and its associated projection
ISP=P+P+...+P,. Alsowe know that if 7" is normal, then M; reduces T. Therefore
TP; = PT for each P, it follows from this that TP = PT and hence M reduces T and
so by definition M is invariant under 7. If M # {0}, then since all the eigen vectors
of T are contained in M, the restriction of T to M is an operator (normal) on a non-
trivial finite dimensional Hilbert space which has no eigen vectors and hence no eigen
values. But this is a contradiction to the fact that there exists an orthonormal basis for
H consisting of eigen vectors of normal operator 7. Hence M = {0} and so M = H and
hence which H = M| + M, + ...+ M,, shows that M;’s span H.

Hence the result.
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