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CHAPTER 1

Normed Linear Space and Inequalities
In this Chapter, we shall discuss some preliminaries on inequalities, vector spaces

and metric spaces, which can be usefull as a reference material. Further, a study of
normed linear space and its propeties is made. Some examples on space are also dis-
cussed. Finally, the chapter concludes with Cauchy, Holders and Minkowski’s Inequal-
ities.

Definition 1.1. A vector space or linear space over field F is a set X with operation
called addition X ×X to X given by (x,y)→ x+ y and an operation called scalar mul-
tiplication defined on F×X → X given by (α,x)→ αx satisfying the following condi-
tions. For all x,y,z ∈ X and α,β ∈ F

(i) (x+ y)+ z = x+(y+ z)

(ii) x+ y = y+ x

(iii) ∃ an element 0 ∈ X such that x+0 = x = x+0

(iv) for each x ∈ X ∃ an element −x ∈ X such that x+(−x) = 0 = (−x)+ x

(v) α(x+ y) = αx+αy

(vi) (α +β )x = αx+βx,

(vii) (αβ )x = α(βx)

(viii) 1.x = x

The two primary operations in a linear space addition and scalar multiplication are
called the linear operations. The zero element of a linear space is usually referred to as
the origin.

A linear space is called a real linear space or a complex linear space according as the
scalars are real numbers or complex numbers.
Examples of Vector Space

Example 1.2. The set R of all real numbers is a real linear space under addition and
multiplications of real numbers. R is not a vector space over C.

Example 1.3. The set C of all complex numbers is a complex linear space under addi-
tion and multiplications of complex numbers.



2

Example 1.4. For any positive interger n,

Rn = {(x1,x2, · · · ,xn) : xi ∈ R, i = 1,2, · · ·n}

is vector space over with operations

x+ y = (x1,x2, · · · ,xn)+(y1,y2, · · · ,yn) = (x1 + y1,x2 + y2, · · · ,xn + yn)

and
αx = α(x1,x2, · · · ,xn) = (αx1,αx2, · · · ,αxn).

The above operations are called coordinate-wise operations. In a similar manner, Cn is
linear space over field of complex numbers.

Linear Transformation
Let U and V be two vector space over same field F . A mapping T : U→V is said to be
linear if

(i) T (x+ y) = T (x)+T (y) for all x,y ∈ X

(ii) T (αx) = αT (x) for every x ∈ X and every α ∈ F .

Definition 1.5. An isomorphism f between linear spaces (over the same scalar field) is
a bijective linear map that is f is bijective and

f (αx+βy) = α f (x)+β f (y)b

Two linear spaces are called isomorphic (or linearly isomorphic) if and only if there
exists an isomorphism between them.

The notion of norm was established in order to give a method to measure the lengh
(magnitude) of a vector. For example, if x = (−1,2,−3,−7,−11) is in R5, then ||x||=
11 is vector norm, which is length of largest coordinate. On the real line norm of vector
||x|| = |x|. In fact the concept of norm is generalization of concept of length that is
familiar for the set of real or complex numbers.

Definition 1.6. A semi-norm on a linear space X is a function ρ : X → R satisfying

(i) ρ(x)≥ 0 ∀ x ∈ X .

(ii) ρ(αx) = |α|p(x) for all x ∈ X and α (scalar)

(iii) ρ(x+ y)≤ ρ(x)+ p(y) for all x,y ∈ X .
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Property (ii) is called absolute homogeneity of ρ and property (iii) is called subad-
ditivity of ρ . Thus a semi-norm is non-negative real, subadditive, absolutely homoge-
neous function of the linear space e.g. ρ(x) = |x| is a seminorm on the linear space C
of complex numbers. Similarly if f : X → C is a linear map, then ρ(x) = | f (x)| is a
semi-norm on x.

Thus a semi-normed linear space is an ordered pair (x,ρ) where ρ is a seminorm
on x.

Definition 1.7. Let X be real (complex ) linear space then a norm on a linear space X
is a function ‖ ‖ : X → R satisfying

(i) ‖x‖ ≥ 0 and ‖x‖= 0 if and only if x = 0 for x ∈ X

(ii) ‖αx‖= |α|.‖x‖
(iii) ‖x+ y‖ ≤ ‖x‖+‖y‖

we observe that a semi-norm becomes a norm if it satisfies one additional condition
i.e.

‖x‖= 0 iff x = 0

Further, ‖x‖ is called norm of x. The non-negative real number‖x‖ is considered as the
length of the vector x.

A normed linear space is an ordered pair (X ,‖.‖) where ‖.‖ is a norm on X .

Metric on Normed linear Spaces

Definition 1.8. Let N be an arbitrary set. It is called a metric space if there exists a
function d : N×N→ R (called distance or metric function) satisfying

(i) d(x,y)≥ 0

(ii) d(x,y) = 0 if and only if x = y.

(iii) d(x,y) = d(y,x)

(iv) d(x,z)≤ d(x,y)+d(y,z) [Triangle inequality] for any x,y,z ∈ N.

If d is metric on X , then the ordered pain (N,d) is called a metric space.
Let N be a normed linear space. We introduce a metric in N defined by

d(x,y) = ‖x− y‖ (1)

This metric (distance function) satisfies all axioms of the definition of norm. As



4

(i) ‖.‖ ≥ 0⇔ d(x,y)≥ 0.

(ii) d(x,y) = 0⇔‖x− y‖= 0⇔ x− y = 0⇔ x = y.

(iii) d(x,y) = ‖x− y‖= ‖−1(y− x)‖= |−1|‖y− x‖= ‖y− x‖= d(y,x)

(iv) d(x,y) = ‖x− y‖= ‖x− y+ z− z‖ ≤ ‖x− z‖+‖z− y‖= d(x,z)+d(z,y).

Hence a normed linear space N is a metric space with respect to the metric d defined
above. But every metric space need not be a normed linear space since in every metric
space there need not be a vector space structure defined e.g. the vector space X 6= 0
with the discrete metric defined by

d(x,y) =

{
0 if x = y
1 if x 6= y

is not a normed linear space.

Note: The above metric in equation 1, has following additional properties: If x,y,z ∈ N
and α a scalar, then

(i) d(x+ z,y+ z) = ‖(x+ z)− (y+ z)‖= ‖x− y‖= d(x,y) (Translation Invariance)

(ii) d(αx,αy) = ‖αx−αy‖= ‖α(x− y)‖= |α|‖x− y‖= |α|d(x,y).

Also it is important to note here that a metric is induced norm only when the above two
properties are satisfied for all value of scalar α .
For discrete metric, If we set α = 2, then

d(αx,αy) 6= |α|d(x,y)

as

d(2x,2y) =

{
0 if 2x = 2y i.e., x = y
1 if 2x 6= 2y i.e., x 6= y

and

2d(x,y) =

{
0 if x = y
2 if x 6= y.

Remark: In the definition of norm ‖x‖= 0⇔ x = 0 is equivalent to the condition

‖x‖ 6= 0 if x 6= 0



Functional Analysis:- Author: Dr. Vizender Singh Vetter: Dr. Ramesh Kumar Vats 5

Also the fact that ‖x‖> 0 is implied by the second and third condition of norm

‖0‖= ‖0.1‖= 0.‖1‖= 0

and ‖0‖= ‖x− x‖ ≤ ‖x‖+‖x‖= 2‖x‖

⇒ 2‖x‖ ≥ 0

⇒ ‖x‖ ≥ 0.

Remark: As in the case of real line, the continuity of a function can be given in terms
of convergence of certain sequence. We can alternatively define continuity in terms of
convergence of sequence in normed linear space also.

Definition 1.9. Let (E, ‖.‖E) and (F,‖.‖F) be two normed linear spaces respectively.
We say that f is continuous at x0 ∈ E if given ∈> 0,∃δ > 0 such that

⇒ ‖ f (x)− f (x0)‖F <∈ whenever ‖x− x0‖E < δ .

Since every normed linear space is a metric space, this definition of continuity is
same in it as the definition of continuity in metric space. Thus f is continuous at x0 ∈ E
iff whenever xn→ x0 in E, f (xn)→ f (x0) in F.

Remark: In normed linear spaces, convergence is defined as

x = lim
n

xn or xn→ x by ‖xn− x‖→ 0 as n→ ∞

This convergence in normed linear space is called convergence in norm or strong
convergence.

Definition 1.10. A sequence < xn > in a normed linear space is a Cauchy sequence if
given ∈> 0, there exists a positive integer m0 such that

‖xm− xn‖<∈ whenever m,n≥ m0.

Definition 1.11. A normed linear space N is called complete or Banach space iff every
Cauchy sequence in it is convergent that is if for each Cauchy sequence < xn > in N,

there exist an element x0 in N such that xn → x0. A complete normed linear space is
called a Banach space.

Some properties of Normed Linear Spaces
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Theorem 1.12. Let N be a normed linear space over the scalar field F. Then

(i) The map (αx)→ αx from F×N→ N is continuous

(ii) The map (x,y)→ x+ y from N×N→ N is continuous.

(iii) The map x→‖x‖ from N to R is continuous.

Proof: To prove (i) we must show that if αn→ α and xn→ x, then αnxn→ αx.
So we assume αn→ α and xn→ x i.e. |αn−α| → 0,‖xn− x‖→ 0.
Then ‖αnxn−αx‖= ‖αn(xn− x)+(αn−α)x‖

≤ |αn| ‖xn− x‖+ |αn−α| .‖xn‖→ 0

and so (i) holds.
To prove (ii) we suppose that xn→ x,yn→ y i.e. ‖xn− x‖ → 0 and ‖yn− y‖ → 0.

Then by triangle inequality

‖(xn + yn)− (x+ y)‖= ‖(xn− x)+(yn− y)‖
≤ ‖xn− x‖+‖yn− y‖→ 0

and so xn + yn → x + y and hence (ii) holds. Before proving (iii), we establish the
inequality

|‖x‖−‖y‖| ≤ ‖x− y‖ (*)

We note that in a normed linear space

‖x‖= ‖y+(x− y)‖ ≤ ‖y‖+‖x− y‖
⇒ ‖x‖−‖y‖ ≤ ‖x− y‖ (2)

On interchanging the roles of x and y, we find that

‖y‖−‖x‖ ≤ ‖y− x‖= ‖x− y‖ (3)

From (1) and (2), it follows that

|‖x‖−‖y‖| ≤ ‖x− y‖

We now prove (iii). Let xn→ x, then from the above inequality,

|‖xn‖−‖x‖| ≤ ‖xx− x‖→ 0
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which implies that ‖xn‖→ ‖x‖ Thus we have shown that xn→ x⇒‖xn‖→ ‖x‖.
Thus the map ‖.‖ : N→ R is continuous. Hence the result.

Remark: (i) and (ii) show that scalar multiplication and addition are jointly continuous
where as (iii) shows that norm is a continuous function. (2) The introduction of a norm
in a linear space is called norming.

Theorem 1.13. In a normed linear space, every convergent sequence is a Cauchy se-
quence.

Proof: Suppose that the sequence < xn > in a normed linear space N converges to
a point x0 ∈ N. To show that it is Cauchy sequence, let ∈> 0 be given. Since the
sequence < xn > converges to x0, there exists a positive integer m0 such that n≥m0⇒
‖xn− x0‖< ∈

2 . Hence for all m,n≥ m0, we have

‖xm− xn‖= ‖xm− x0 + x0− xn‖ ≤ ‖xm− x0‖+‖xn− x0‖<
∈
2
+
∈
2
=∈ .

Thus the convergent sequence < xn > is a Cauchy sequence.

Further Properties of Normed spaces

By definition, a subspace Y of a normed space X is a subspace of X considered as a
vector space, with the norm obtained by restricting the norm on X to the subset Y . This
norm on Y is said to be induced by the norm onX . If Y is closed in X , then Y is called
a closed subspace of X . Thus, a subspace Y of a Banach X is considered as a normed
space. Hence we donot require Y to be complete.

Theorem 1.14. A subspace Y of a Banach space X is complete if and only if the set Y
is closed in X .

Proof: The result directly follows from “A subspace M of a complete metric space X
is itself complete if and only if the set M is closed in X .

Definition 1.15. Infinite series can now be defined in a way similar to that in calculus.
In fact, if < xk >is a sequence in a normed space X , we can associate with < xk > the
sequence < Sn > of partial sums

Sn = x1 + x2 + · · ·+ xn

For n = 1,2 . . .. If < Sn > is convergent, say Sn→ S that is ‖Sn−S‖→ 0,
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Then the infinite series or briefly the series

∞

∑
K=1

xK = x1 + x2 + · · · (1)

is said to converge or to be convergent, S is called the sum of the series and we write

S =
∞

∑
K=1

xK = x1 + x2 + · · ·

If S = ∑
∞
K=1 ‖xK‖ = ‖x1‖+ ‖x2‖+ . . . . . . .. converges, then the series 1 is said to be

absolutely convergent. However in a normed space X absolute convergence implies
convergence if and only if X is complete.

The concept of convergence of a series can be used to define a basis as follows:

If a normed space x contains a sequence < en > with the property that for every
x ∈ X , there is a unique sequence of scalars < αn > such that

‖x− (α1e1 + . . .+αnen)‖→ 0 as n→ ∞ (6)

then < en > is called a Schauder Basis for X . The series

∞

∑
K=1

αKeK

which has the sum x is then called the expansion of x with respect to < en > and we
write

x =
∞

∑
K=1

αKeK

Finite Dimensional Normed Spaces and Subspaces

Theorem 1.16. Every finite dimensional subspace Y of a normed space X is complete.
In particular, every finite dimensional normed space is complete.

Proof:To prove the theorem,first we prove a Lemma,

Lemma. Let {x1,x2, . . . ,xn} be a linearly independent set of vectors in a normed space
X (of any dimension). Then there is a number C > 0 such that for every choice of
scalars α1,α2, . . . ,αn, we have

‖α1x1 + . . .+αnxn‖ ≥C(|α1|+ . . . |αn|) (C > 0) (1)
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Proof of Lemma: We write S = |α1|+ |α2|+ |αn|. If S = 0, all αi are zero, so that (1)
holds for any C. Let S > 0, then (1) is equivalent to the inequality which we obtain from
(1) by dividing by S and writing β j = α j/S that is

‖β1x1 + . . .+βnxn‖ ≥C(
n

∑
j=1
|β j|= 1) (2)

Hence it is sufficient to prove the existence of a C > 0 such that (2) holds for every
n-tuple of scalars β1 . . .βn with

∑ |β j|= 1.

Suppose that this is false. Then there exists a sequence < ym > of vectors

ym = β
(m)
1 x1 + . . .+β

(m)
n xn (

n

∑
j=1
|β (m)

j |= 1)

such that

‖ym‖→ 0 as m→ ∞.

Since ∑ |β (m)
j |= 1, we have |β (m)

j | ≤ 1. Hence for each fixed j, the sequence

< β
(m)
j >=< β

(1)
j ,β

(2)
j , . . . >

is bounded. Consequently, by the Bolzano-Weierstrass theorem, < β
(m)
j > has a con-

vergent subsequence. Let β1 denote the limit of that subsequence and let < y1,m >

denote the corresponding subsequence of < y2,m >. By the same argument, < y1,m >

has a subsequence < y2,m > for which the corresponding subsequence of scalars β
(m)
2

converges, let β2 denote the limit-continuing in this way, after n steps we obtain a sub-
sequence

< yn,m >= (yn,1,yn,2, . . .) of < ym >

whose terms are of the form

yn,m =
n

∑
j=1

γ
(m)
j x j(

n

∑
j=1

γ
(m)
j |= 1)

with scalars γ
(m)
j satisfying γ

(m)
j → β j as m→ ∞.
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Hence as m→ ∞,

yn,m→
n

∑
j=1

β jx j

where ∑ |β j|= 1 so that not all β j can be zero. Since {x1, . . . ,xn} is a linearly indepen-
dent set, we thus have y 6= 0. On the other hand ,yn,m→ y implies ‖yn,m‖→ ‖y‖ by the
continuity of the norm. Since ‖ym‖ → 0 by assumption and < yn,m > is a subsequence
of < ym >, we must have ‖yn,m‖→ 0, Hence ‖y‖= 0, so that y = 0. But this contradicts
that y 6= 0, and the lemma is proved.

Now we prove the theorem.

Proof of the theorem. We consider an arbitrary Cauchy sequence < ym > in Y and
show that it is convergent in Y, the limit will be denoted by y. Let dimY = n and
{e1,e2, . . .en} any basis for Y. Then each ym has a unique representation of the form

ym = α
(m)
1 e1 + . . . . . . . . .+α

(m)
n en

Since < ym > is a Cauchy sequence, for every ∈> 0, there is an N such that ‖ym−
yn‖<∈ when m,r > N. From this and the above Lemma, we have for some C > 0,

∈> ‖ym− yr‖= ‖
r

∑
j=1

(α
(m)
j −α

r
j)e j‖

≥C
r

∑
j=1
|α(m)

j −α
(r)
j |

where m,r > N. Division by C > 0 gives

|α(m)
j −α

(r)
j | ≤

r

∑
j=1
|α(m)

j −α
(r)
j |<

∈
C
, (m,r > N)

This shows that each of the n sequences

< α
(m)
j >=< α

1
j ,α

(2)
j , . . . > j = 2,2, . . . ,n

is Cauchy in R or C. Hence it converges let α j denote the limit. Using these n limits,
α1,α2, . . . ,αn, we define

y = α1e1 +α2e2 + . . .+αnαn
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Clearly y ∈ Y. Further

‖ym− y‖= ‖
n

∑
j=1

(α
(m)
j −α j)e j‖ ≤

n

∑
j=1
|α(m)

j −α j|.‖e j‖

On the right αm
1 → α j. Hence ‖ym− y‖→ 0, that is ym→ y. This shows that < ym > is

convergent in Y. Since < ym > was an arbitrary Cauchy sequence in Y.
This proves that Y is complete.

Remark. From the above theorem and the result “A subspace M of a complete metric
space X is complete if and only if the set M is closed in X”, we get the following:

Theorem 1.17. Every finite dimensional subspace Y of a normed space X is closed in
X .

Remark. Infinite dimensional subspaces need not be closed e.g. Let X = C[0,1] and
Y = span{x0,x1, . . . ..} where x j(t) = t j so Y that is the set of polynomials. Y is not
closed in X .

Quotient Space

Definition 1.18. Let M be a subspace of a linear space L and let the coset of an element
x in Lbe defined by

x+M = {x+m;m ∈M}

Then the distinct cosets form a partition of L and if addition and scalar multiplication
are defined by

(x+M)+(y+M) = (x+ y)+M

and
α(x+M)≡ αx+M

then these cosets constitute a linear space denoted by L/M and called the quotient space
of L with respect to M. The origin in L/M is the coset 0+M = M and the negative of
x+M is (−x)+M .

Theorem 1.19. Let M be a closed linear subspace of a normed linear space N. If the
norm of a coset x+M in the quotient space N/M is defined by

‖x+M‖= inf{‖x+m‖;m ∈M} (1)

Then N/M is a normed linear space. Further if N is a Banach space. Then so is N/M.
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Proof: We first verify that (1) defines a norm in the required sense. It is obvious that
‖x+M‖≥ 0. Since ‖x+m‖ is a non-negative real number and every set of non-negative
real numbers is bounded below, it follows that inf {‖x+m‖;m ∈ M} is non negative.
That is

‖x+M‖ ≤ 0 ∀ x+M ∈ N/M

Also ‖x+M‖= 0⇔ there exists a sequence {mk} in M such that ‖x+mk‖→ 0
⇔ x is in M
⇔ x+M = M = The zero element of N/M.
Next we have

‖(x+M)+(y+M) = ‖(x+ y)+M‖
= inf{‖x+ y+m‖;m ∈M}
= inf{‖x+ y+m+m′‖;mand ∈M}
= inf{‖(x+m)+(y+m′‖;m,m′ ∈M}
≤ inf{‖x+ y+m‖;mand ∈M}+ inf{‖y+m′‖.m ′ ∈M}
= ‖x+M‖+‖y+M‖

‖α(x+M)‖= inf{‖α(x+M)‖;m ∈M}
= inf{|α| ‖x+m‖;m ∈M}
= |α| inf{‖x+m‖;m ∈M}
= |α| ‖x+M‖

Finally we assume that N is complete and we show that N/M is also complete.
If we start with a Cauchy sequence in N/M, Then it is sufficient to show that this

sequence has a convergent subsequence. It is clearly possible to find a subsequence
{xn +M} of the original Cauchy sequence such that

‖(x2 +M)− (x2 +M)‖< 1
4

and in general

‖(xn +M)− (xn+1 +M)‖< 1
2n

we prove that this sequence is convergent in N/M. We begin by choosing any vector y1

in x1+M and we select y2 in x2+M such that ‖y1−y2‖< 1
2 . We next select a vectory3

in x1 +M such that ‖y2− y3‖ < 1
4 . Continuing in this way we obtain a sequence {yn}

in N such that If m < n, then

‖ym− yn‖= ‖ym− ym+1)+(ym+1ym+2)+ . . .+(yn−1− yn‖
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≤ ‖ym− ym+1‖+‖ym+1− ym+2‖+ . . .+‖yn−1− yn‖

<
1

2m +
1

2m+1 + . . .+
1

2n+1

<
1

2m +
1

2m+1 + . . .+

=
1
2

m

1− 1
2

=
1

2m+1

So {yn} is a Cauchy sequence in N. Since N is complete, there exists a vector y in N
such that yn→ y. Finally

‖(xn +M)− (y+M)‖= ‖xny+M‖
≤ inf{‖xn− y+m‖;m ∈M}
≤ ‖xn−m+ y‖ for allm ∈M

But yn = xn +mn for some mn ∈M

≤ ‖yn− y‖→ 0 since yn→ y.

Hence xn +M→ y+M ∈ N/M
⇒ N/M is complete.

Definition 1.20. A series ∑
∞
n=1 an,an ∈ X is said to be convergent to x ∈ X , where

X is a normed linear space if the sequence of partial sums < Sn > where Sn = ∑
n
i=1 ai

converges to x i.e. for every ∈> 0, there exists n0 ∈N such that ‖Sn−x‖<∈ for n≥ n0.

A series∑
∞
n=1 an is said to be absolutely convergent if ∑

∞
n=1 ‖an‖ is convergent.

Since every normed linear space is a metric space, hence every convergent sequence
in it is Cauchy but not conversely.

The following theorem gives a nice characterization of a Banach space in terms of
series.

Theorem 1.21. A normed linear space is complete if and only if every absolutely con-
vergent series in X is convergent.

Proof: Let X be complete. For each positive integer n, let xn be an element of X such
that ∑

∞
n=1 ‖xn‖< ∞. Let yk = ∑

k
n=1 xn. Then

‖yp+k− yk‖= ‖
k+p

∑
n=1

xn−
k+p

∑
n=1

xn‖
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= ‖
k

∑
n=k+1

xn‖

≤
k

∑
n=k+1

‖xn‖→ 0ask→ ∞.

Hence < yk >
∞
k=1 is a Cauchy sequence in X and since X is complete, there exists x ∈ X

such that

x = lim
k→∞

yk = lim
k→∞

k

∑
n=1

xn =
∞

∑
n=1

xn

Thus the series ∑
∞
n=1 xn converges.

Conversely, let every absolutely convergent series be convergent. Let < xn > be a
Cauchy sequence in X .
For each positive integer k, ∃ a positive integer nk such that

‖xn− xm‖<
1
2k for all m,n≥ nk.

From this, we get

‖xnk+1− xnk‖<
1
2k for all k = 1,2,3, · · · .

Now, the series
∞

∑
1
‖xnk+1− xnk‖ ≤

∞

∑
1

1
2k < ∞.

By the hypothesis, ∑
∞
k=1(xnk+1− xnk) has a convergent subsequence < xnk > and so the

whole sequence < xn > converges. Hence X is complete.

Riesz Lemma
Let X be a proper closed linear subspace of a normed linear space Xover the field K.

Let 0 < α < 1, then ∃ xα ∈ X such that

‖xα‖= 1 and inf
y∈Y
‖xα − y‖ ≥ α.

Theorem 1.22. Let X be normed linear space. The closed unit ball

B = {x ∈ X ;‖x‖ ≤ 1}

in X is compact if and only if X is finite dimensional.
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Proof: Let X be finite dimensional. Since B is closed and bounded. It follows from
Heine-Borel theorem that it is compact.

Conversely suppose that B is compact but X is infinite dimensional. Choose x1 ∈ X
with ‖x1‖= 1. This x1 generates a one-dimensional subspace X1 of X .

Since every finite dimensional subspace of a normed linear space is closed, it fol-
lows that X1 is closed. Now X1 is a proper subspace of Xand dim X = ∞.

By Riesz-Lemma there is an x2 ∈ X of norm 1 such that

‖x2− x1‖ ≥
1
2
.

The set {x1,x2} generates a two dimensional proper closed subspace X2 of X .

By Riesz Lemma, there is an x3 of norm 1 such that for all x ∈ X2, we have

‖x3− x‖ ≥ 1
2

In particular

‖x3− x1‖ ≥
1
2

and
‖x3− x2‖ ≥

1
2
.

Proceeding by induction, we obtain a sequence < xn > of elements of B such that

‖xm− xn‖ ≥
1
2
(m 6= n)

i.e. {xn} can not have a convergent subsequence which contradicts the compactness of
B. Hence the result.

Cauchy’s inequality. Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be two n-tuples of
real or complex numbers. Then

n

∑
i=1
|xiyi| ≤

[ n

∑
i=1
|xi|2

] 1
2
[ n

∑
i=1
|yi|2

] 1
2

Proof: We first remark that if a and b are any two non-negative real numbers, then
a1/2.b1/2 ≤ a+b

2 . Infact, on squaring both sides and rearranging, it is equivalent to 0≤
(a−b)2 which is obviously true. If x = 0 or y = 0, the assertion is clear. We therefore
assume that x 6= 0 or x 6= 0 We define ai and bi by

ai =
[ |xi|
‖x‖

]2
andbi =

[ |yi|
‖y‖

]2
.
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Since a1/2.b1/2 ≤ a+b
2 .

⇒ |xiyi|
‖x‖.‖y‖

≤ |xi|2/‖x‖2 + |yi|2/‖y‖2

2

Summing these inequalities as i varies from 1 to n, we obtain

∑
n
i=1 |xiyi|
‖x‖.‖y‖

≤ 1+1
2

= 1

and hence
n

∑
i=1
|xiyi| ≤ ‖x‖.‖y‖

which proves ∑
n
i=1 |xiyi| ≤ ‖x‖.‖y‖.

Minkowski’s-inequality: Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be two n-
tuples of real or complex numbers. Then[ n

∑
i=1
|xi + yi|2

] 1
2 ≤

[ n

∑
i=1
|xi|2

] 1
2
+
[ n

∑
i=1
|yi|2

] 1
2
.

or
‖x+ y‖ ≤ ‖x‖+‖y‖.

Proof: Using Cauchy’s inequality, we have the following chain of relations.

‖x+ y‖2 =
n

∑
i=1
|xi + yi|.|xi + yi|

≤
n

∑
i=1
|xi + yi|(|xi + yi|)

=
n

∑
i=1
|xi + yi|.|xi|+

n

∑
i=1
|xi + yi|.|yi|

≤ ‖x+ y‖.‖x‖+‖x+ y‖.‖y‖
= ‖x+ y‖(‖x‖+‖y‖)

If ‖x+y‖= 0, the inequality to be proved is trivially true. If ‖x+y‖ 6= 0, then dividing
the inequality (1) through by ‖x+ y‖, we obtain

‖x+ y‖ ≤ ‖x‖+‖y‖.

and Minkowski inequality is established.
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Example 1.23. Let p be a real number such that 1≤ p < ∞. We denote by ln
p, the space

of all n− tuples x = (x1,x2, . . . ,xn) of scalars with the norm defined by

‖x‖p = (
n

∑
i=1
|xi|p)

1
p

Since the norm defined in the last example is obviously the special case of this norm
which corresponds to p = 2, so the real and complex spaces ln

2 are the n-dimensional
Euclidean and unitary spaces Rn and Cn. Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn)

and let α be any scalar. Then ln
p is a linear spaces with respect the operations

x+ y = (x1,x2, · · · ,xn)+(y1,y2, · · · ,yn) = (x1 + y1,x2 + y2, · · · ,xn + yn)

and
αx = α(x1,x2, · · · ,xn) = (αx1,αx2, · · · ,αxn).

Since the norm introduced above is non-negative and absolute homogeneous, so to
show that In

p is a normed linear space, it is sufficient to prove that

‖x+ y‖p ≤ ‖x‖p +‖y‖p.

To show this, we first establish the following inequalities.

Holder’s inequality. Let p and q be real numbers greater than 1, with the properties
that 1

p +
1
q = 1 (Such numbers are called conjugate indices). Then for any complex

number
x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn).

n

∑
i=1
|xiyi| ≤

[ n

∑
i=1
|xi|p

] 1
p
+
[ n

∑
i=1
|yi|q

] 1
q

or in our notations
n

∑
i=1
|xiyi| ≤ ‖x‖p.‖y‖q

Proof: If x = 0 or y = 0 the inequality is obvious. So assume that both are non-zero.
Set

ai =
[ xi

‖x‖p

]p
and bi =

[ yi

‖y‖q

]q

Then using

a1/p
i b1/q

i ≤ ai

p
+

bi

q
(a,b≥ 0)
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We have
|xiyi|
‖x‖p‖yq‖

≤ ai

p
+

bi

q
or or

|xiyi|
‖x‖p‖yq‖

≤ 1
p
|xi|p

‖x‖p
p
+

1
q
|yi|q

‖y‖q
q

Summing these inequalities as i varies from 1 to n, we have

∑
n
i=1 |xiyi|
‖x‖p‖y‖ q

≤ 1
p

∑
n
i=1 |xi|p

‖x‖p
p

+
1
q

∑
n
i=1 |yi|q

‖y‖p
q

=
1
p
(‖x‖p)

p

‖x‖p
p

+
1
q
(‖y‖q)

q

‖y‖q
q

=
1
p
+

1
q
= 1

⇒
n

∑
i=1
|xiyi| ≤ ‖x‖p.‖y‖q

We notice that when p = q = 2. Holder’s inequality converts into Cauchy’s inequality.

Minkowski’s inequality: Let p be a real number such that p≥ 1. Then for any complex
numbers

x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn)[ n

∑
i=1
|xi + yi|p

] 1
p
=
[ n

∑
i=1
|xi|p

] 1
p
+
[ n

∑
i=1
|yi|p

] 1
p

‖x+ y‖p ≤ ‖x‖p +‖y‖p

Proof: The inequality is trivial when p = 1. So assume p > 1. Using Holder’s inequal-
ity, we obtain

|xi + yi|pp =
n

∑
i=1
|xi + yi|p

=
n

∑
i=1
|xi + yi|.‖xi + yi‖p−1

≤
n

∑
i=1
|xi||xi + yi|p−1 +

n

∑
i=1
|yi||xi + yi|p−1

≤ (
n

∑
i=1
|xi|p)

1
p (

n

∑
i=1
|xi + yi|(p−1)q)

1
q +(

n

∑
i=1
|xi|p)

1
p (

n

∑
i=1
|xi + yi|(p−1)q)

1
q
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Since (p−1)q = p, we have

= (
n

∑
i=1
|xi|p)

1
p (

n

∑
i=1
|xi + yi|p)

1
p .

p
q +(

n

∑
i=1
|yi|p)

1
p (

n

∑
i=1
|xi + yi|p)

1
p .

p
q

= (‖x‖p +‖y‖p).(‖x+ y‖p/q
p )

If ‖x+ y‖p = 0, then the result is trivial. If ‖x+ y‖p 6= 0, then dividing inequality (1),
throughout by ‖x+ y‖p/q

p we obtain

‖x+ y‖p
p

(‖x+ y‖p/q
p )
≤ (‖x‖p +‖y‖p).(

‖x+ y‖p/q
p

‖x+ y‖p/q
p

)

⇒ ‖x+ y‖
p− p

q
p ≤ ‖x‖p +‖y‖p

⇒ ‖x+ y‖
p(1−( 1

q ))
p ≤ ‖x‖p +‖y‖p

⇒ ‖x+ y‖1
p ≤ ‖x‖p +‖y‖p

since 1
p +

1
a = 1⇒ 1

p = 11
q

Thus ‖x+ y‖p ≤ ‖x‖p +‖y‖p.

In view of the Minkowski’s inequality, it follows that ln
p is a normed linear space as

triangle inequality can be established using this
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CHAPTER 2

Banach Spaces and Its examples.

Particularly useful and important metric spaces are obtained if we take a vector space
and define on it a metric by means of a norm. The resulting space is called normed
linear space. If it is a complete a metric space, it is Banach space. The theory of
normed spaces, in particular Banach space, and the theory of linear operators defined
on them are the most highly developed parts of functional analysis. The present chapter
is devoted to the those basic ideas of those theories.

Definition 2.1. A metric space (X ,d) is said to be complete⇔ every Cauchy sequence
in X has convergent subsequence. Or every Cuachy sequence of points of X converges
to some point of X .

Banach Space:- A complete normed linear space is called Banach space OR A
normed space (E,‖.‖) over field K is called Banach space over K if E is complete
metric arising from norm.

Example 2.2. Show that linear space Rn or Cn of all n-tupples x = (x1,x2, · · · ,xn) of
real or conplex numbers are Banach space w.r.t. norm

‖x‖=
[ n

∑
i=1
|xi|2

] 1
2 (2)

Solution. First, we show that Rn or Cn are normed linear space w.r.t. norm 2.

(i) ‖x‖ ≥ 0 for each xi ≥ 0

(ii) ‖x‖= 0⇔ x = 0

For ‖x‖= 0⇔
[

∑
n
i=1 |x|2

] 1
2
= 0⇔ ∑

n
i=1 |x|2 = 0⇔ |xi|= 0⇔ xi = 0 for all i ⇔

x = (x1,x2, · · · ,xn) = 0

(iii) ‖αx‖=
[

∑
n
i=1 |αx|2

] 1
2
=
[

∑
n
i=1 |α|2|x|2

] 1
2
= |α|

[
∑

n
i=1 |xi|2

] 1
2
= |α|‖x‖

(iv) Sub-additivity

‖x+ y‖=
[ n

∑
i=1
|xi + yi|2

] 1
2

≤
[ n

∑
i=1
|xi|2

] 1
2
+
[ n

∑
i=1
|yi|2

] 1
2 [Using Minkowski’s Inequality]
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Further, we shal prove that Rn or Cn are complete. For this let < xn > be Cauchy se-
quence in Rn or Cn.
These spaces are metric space w.r.t. metric d defined by d(x,y) = ‖x− y‖. Since each
xn is n-tupple of real (or complex) numbers and hense xn = (xn1,xn2, · · · ,xnn), By defin-
tion of Cauchy sequence, given ∈> 0, ∃ positive interger n0 such that for all l,m≥ n0

⇒‖xn− xl‖<∈⇒ ‖xn− xl‖2 <∈2⇒
n

∑
i=1
|xmi− xli|2 <∈2

⇒ |xmi− xli|2 <∈2 for all i. ⇒ |xmi− xli|<∈ for all i.

This shows that < xmi > is Cauchy sequence for all i. Hense Rn or Cn is complete and
therefore Banach Spaces.

Example 2.3. Show that ln
p is Banach Space.

Solution: Here we prove completeness of ln
p. For this let < xm > be a Cauchy sequence

in ln
p. We write

xm = (xm
1 ,x

m
2 , . . . ,x

m
n )

Let ∈> 0 be given, since < xm > is a Cauchy sequence, there exists a+ ve integer m0

such that

‖xm− xl‖p <∈ whenever m, l ≥ m0

⇒ ‖xm− xl‖p
p <∈p

⇒
n

∑
i=1
|x(m)

i − x(l)i |
p <∈p (1)

⇒ |x(m)
i − x(l)i |

p <∈p, i = 1,2, . . . ,n

⇒ |x(m)
i − x(l)i |<∈

This shows that the sequence < xm
i >∞

m=1 is a Cauchy sequence in C or R and complete-
ness of R and C implies that each of these sequence converges to a point say z in Cor R
such tha

lim
m→∞

x(m)
i = zi (i = 1,2, . . . ,n) (3)

We will now show that the Cauchy sequence < xm > converges to the point z=(z1,x2, . . . ,zn)∈
ln
p. To prove this let l→ ∞ in 1, they by 3 for m≥ m0, we have

n

∑
i=1
|x(m)

i − zi|p <∈p⇒‖xm− z‖p
p <∈p
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⇒ ‖xm− z|p <∈

Consequently the Cauchy sequence < xm > converges to z ∈ ln
p. Hence ln

p is complete
and therefore it is a Banach space.

Example 2.4. Let p be a real number such that 1p denote the space of all sequences
x =< x1,x2, · · · ,xn, · · ·> of scalars S such that ∑

∞
n=1 |xn|p < ∞.

Show that 1p is a Banach space under the norm

‖x‖p = [
n

∑
i=1
|xn|p]

1
p

Solution: [N1] : Since each ∑
n
i=1 |xn|p≥ 0⇒we have ‖x‖p≥ 0 and ‖x‖p = 0⇔[∑∞

n=1 |xn|p]
1
p =

0⇔ ∑
∞
n=1 |xn|p = 0

⇔ |xn|p = 0 ∀ n = 1, . . . ,∞

⇔ xn = 0 ∀ n = 1, . . . ,∞

⇔ x =< x1,x2, . . . ,xn, . . . >= 0

[N2] is |x+ y|p ≤ ‖x‖p +‖y‖p

⇒ ‖x+ y‖p = [
∞

∑
n=1
|xn + yn|p]

1
p (1≤ p≤ ∞)

≤ [
∞

∑
n=1
|xn|p]

1
p +[

∞

∑
n=1
|yn|p]

1
p

[Minkowski’s inequality for sequence]
[N3] ‖αx‖p = [∑∞

i=1 |αxn|p]
1
p

= [
∞

∑
n=1
|α|p|xn|p]

1
p

‖α‖= [
∞

∑
n=1
|xn|p]

1
p = |α|.‖x‖p.

Thus lp is a normed linear space.

To prove that lp is complete.
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Let < xn >
∞
n=1 be a Cauchy sequence in lp. Since each xn is itself a sequence of scalars.

We shall denote an element xm by

xm =< x(m)
1 ,x(m)

2 , . . . ,x(m)
n , . . . >

Where ∑
∞
n=1 |x

(m)
n |p < ∞. Since each < xn > is a cauchy sequence in lp, given ∈>

0,∃a+ ve integer m0 such that n,m≥ m0.

⇒‖xn− xm‖p <∈ (4)

In particular

n≥ m0⇒‖xn−m0‖p <∈ (5)

Thus if n≥ m0, then

‖xn‖p = ‖xn− xm0 + xm0‖p ≤ ‖xn− xm0‖p +‖xm0‖p <∈+‖xm0‖p

If ∈+‖xm0‖p = A so that A >,0
Then

[
∞

∑
n=1
|xm

n |p]
1
p < A

‖xn‖p < A for A≥ m0. (6)

As in the above examples, from 4, it can be shown that for fixed i, the sequence <

xn
i >

∞
n=1 is a Cauchy sequence in C or R and consequently it must converge to a number

say zi.

Let z =< z1,z2, · · · ,zn > we assert that z ∈ 1p and the cauchy sequence < xn > con-
verges to z ∈ 1p and we first show that z ∈ 1p, from 6 we have for n≥ m0

‖xn‖p
p < Ap⇒

∞

∑
i=1
|x(n)i |

p < Ap

Hence for any +ve integer L, we have

L

∑
i=1
|x(n)i |

p (n≥ m0) (7)
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But for i = 1, . . . ,L, we have x(n)i → zi as n→ ∞. Hence letting n→ ∞. in 7, we obtain

L

∑
i=1
|zi|p ≤ Ap (L = 1,2, . . .)

⇒
∞

∑
i=1
|zi|p ≤ Ap < ∞

This proves that z =< zn >
∞
n=1∈ lp.

Finally from 4, for n,m≥ m0

‖xn− xm‖p
p <∈p⇒

∞

∑
i=1
|x(n)i − x(m)

i |
p <∈p

Hence for any +ve integer L,we have

L

∑
i=1
|x(n)i − x(m)

i |
p <∈p (n,m≥ m0)]

Letting m→ ∞ and using limm→∞ x(m)
i = zi we obtain

⇒
L

∑
i=1
|x(n)i − zi|p <∈p for all n≥ m0

Example 2.5. (The space l2). Let l2 denote the linear space of all sequences x =<

x1,x2, . . . > of all scalars such that

∞

∑
n=1
|xn|2 < ∞

Show that l2 is a Banach space under the norm ‖x‖= [∑∞
n=1 |xn|2]

1
p .

Solution: This space is called Hilbert coordinate space or sequence space. This is a
particular case of the previous example with p = 2. If the scalars are real, then l2 is
known as infinite dimensional Euclidean space and is denoted by R∞. If the scalars are
complex, then l2is called infinite dimensional unitary space denoted by C∞.

Example 2.6. Lex X be non-zero normed linear space. Prove that X is Banach space
iff {x ∈ X : ‖x‖= 1} is complete. Since
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Solution. Let X be Banach space and M = {x ∈ X : ‖x‖ = 1}. Since X is Banach
space⇒ X is complete as a metric space. Let < xn > be Cauchy sequence in M, then
‖xn‖ = 1 for all n. Since < xn > is a Cauchy sequence in M ⊂ X ⇒ < xn > is a
Cauchy sequence in X , but X is complete.
⇒ ∃ x ∈ X such that xn→ x.
Again since, ‖.‖ is continuous function, Therefore, we have

‖xn‖ → ‖x‖ or ‖x‖= lim
n→∞
‖xn‖= 1 or ‖x‖= 1. [By definition ofM]

It follows that x ∈M. Thus Cauchy sequnce < xn > of points in M converges to a point
x ∈M. Hence M is complete.

Converse. Let M is complete, we shall prove that X is Banach space. Since X is
normed linear space, so it only require to prove that X is complete. For this let < xn >

be a Cauchy sequence in X , then by definition

‖xn− xm‖ → 0asm, n → 0. (8)

But, By 8⇒≤ ‖xn− xm‖ → 0.
Which shows that < ‖xn‖> is a Cauchy sequence in R, being complete. Hence ∃α ∈ R
such that

‖xn‖ → α as n → ∞. (9)

Write

yn =
xn

‖xn‖
for all n ∈ N. (10)

We shall now show that < yn > is a Cauchy sequence, for this

‖yn− ym‖=
∥∥∥ xn

‖xn‖
− xm

‖xm‖

∥∥∥= ∥∥∥ xn

‖xn‖
+

xm

‖xm‖
− xm

‖xm‖
− xm

‖xm‖

∥∥∥
≤ ‖xn− xm‖

‖xn‖
+
‖xm‖.‖(‖xn‖−‖xm‖)‖

‖xn‖.‖xm‖

≤ ‖xn− xm‖
‖xn‖

+
‖(xn− xm)‖
‖xn‖

or

‖yn− ym‖ ≤ 2.
‖(xn− xm)‖
‖xn‖
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Letting the limit as n,m→ ∞, we have

‖yn− ym‖ ≤ 0 but ‖yn− ym‖ ≤ 0

⇒ ‖yn− ym‖= 0 as n,m→ ∞.
⇒ < yn > is Cauchy sequence in X . Since, from 10, ‖yn‖= 1 for all n and yn ∈M.
Which Finally, implies that < yn > is Cauchy sequence in M, which is being complete.
Hense ∃y∈M such that yn→ y as n→∞⇒ xn

‖xn‖→ y as n→∞. or by 9⇒ limn→∞ xn =

αy. But as y∈M, α a scalar, and M is linear space⇒αy∈M⊂ X⇒αy∈ X . therefore
a Cauchy sequence of points in X converges to a point in X . Thus X is complete, so a
Banach Space.

Example 2.7. Let p be a positive real number. A measurable function f defined on
[0,1] is said to belong to the space Lp[0,1] if

∫ 1
0 | f |p < ∞.

Thus L1 consists precisely of the L ebesgue integrable functions on [0,1]. Since
| f + g|p ≤ 2p(| f |p + |g|p), it follows that f + g ∈ Lp if f ,g ∈ Lp. Also α f is in Lp,
therefore α f +βg ∈ Lp whenever f ,g ∈ Lp. For a function f in Lp, we define

‖ f‖= ‖ f‖p = (
∫ 1

0
| f |p)

1
p

we observe that ‖ f‖ = 0⇔ f = 0 almost everywhere. Thus one of the requirement
for a space to be a normed linear space is not satisfied. To overcome this difficulty,
we consider two measurable functions to be equivalent if they are equal almost every
where. If we do not distinguish between equivalent functions, then Lp space shall
become a normed linear space. Thus we should say that the elements of Lp are not
functions but rather equivalence classes of functions. If α is a constant, then ‖α f‖ =
|α|.‖ f‖. Thus to show that the linear space Lp is normed linear space, it is sufficient to
show that ‖ f +g‖ ≤ ‖ f‖+‖g‖. To show this again we establish two inequalities:

Holder’s Inequality.

Theorem 2.8. If p and q are non-negative extended real numbers such that 1
p +

1
q = 1

and if f ∈ Lp, and g ∈ Lq, then∫
| f g| ≤ ‖ f‖p.‖g‖q

Proof. The case p = 1 and q = 1 is straight forward. We assume therefore that 1 < p <

∞ and consequently 1 < q < ∞. Let us first suppose that

‖ f‖p = ‖g‖q = 1. Using the inequality
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α
λ

β
1−λ ≤ λα +(1−λ )λ , α and β are non-negative reals.

Taking α = | f (t)|p, β = |g(t)|q

λ =
1
p
, 1−λ = 1− 1

p
=

1
q
,

we obtain

| f (t).g(t)| ≤ 1
p
| f (t)|p + 1

q
|g(t)|q

Now integration yields∫
| f g| ≤ 1

p

∫
| f |p + 1

p

∫
|gq|= 1

If ‖ f‖= 0 or ‖ f‖= 0, then the inequality to be established is trivial. Let f and g be any
elements of Lp and Lp with ‖ f‖ ∈ 0. Then f

‖ f‖ p
and g

‖g‖q
both have norm 1. Substituting

them in (1) gives

1
‖ f‖p‖g‖q

∫
| f g|=

∫ | f |
‖ f‖p

.
|g|
‖g‖q

≤ 1

and hence∫
| f g| ≤ ‖ f‖p.‖q‖q

Minkowski’s Inequality.

Theorem 2.9. If f and g are in Lp, then so is f +g and

‖ f +g‖p ≤ ‖ f‖p +‖g‖p

Proof. Since | f +g|p ≤ 2p(| f |p + |g|p), therefore f ,g ∈ Lp implies f = g ∈ Lp, the
inequality is clear when p = 1, so we assume that p > 1. Let q > 1 such that 1

p +
1
q = 1.

Then (p−1)q = p. Also∫
| f +g|p ≤

∫
| f +g|.| f +g|p+1

⇒
∫
| f +g|p ≤

∫
| f |.| f +g|p−1 +

∫
|g|.| f +g|p−1 (11)

We note that∫
[| f +g|p−1]q =

∫
| f +g|(p−1)q =

∫
| f +g|p < ∞ (since pq−q = p)
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Therefore | f +g|p−1 ∈ Lq. Since f ,g∈ Lp and we have just shown that | f +g|p−1 ∈ Lq,

Holder’s inequality (proved above) implies that | f |.| f +g|p−1 and |g|.| f +g|p−1 are in
L1 and∫

| f |.| f +g|p−1 ≤ ‖ f‖p.‖(| f +g|
p−1

)‖q∫
|g|| f +g|p−1 ≤ ‖g‖p.‖(| f +g|

p−1
)‖q

But, by definition of norm,

‖(| f +g|)p−1)‖q = {
∫
(| f +g|)(p−1)q}1/q

= {
∫
(| f +g|)p}1/q

= {‖ f +g‖p
p}1/q

= {‖ f +g‖p}p/q

Thus ∫
| f |.| f +g|(p−1) ≤ ‖ f‖p.{‖ f +g‖p}p/q (12)

∫
|g|.| f +g|(p−1) ≤ ‖g‖p.{‖ f +g‖p}p/q (13)

Combining 11, 12 and 13, we have

‖ f +g‖p
p ≤ (‖ f‖p +‖g‖p){‖ f +g‖p}p/q

Dividing throughout by {‖ f +g‖p},p/q we obtain

‖ f +g‖p ≤ ‖ f‖p +‖g‖p

which completes the proof of Minkowski’s inequality.
We have proved therefore that Lp space is a normed linear space. Now we prove

that it is a complete space. We require some results.

Definition 2.10. A series ∑ fn in a normed linear space is said to be summable to sum
S if S is in the space and the sequence of partial sums of the series converges to S, that
is,

‖S−
n

∑
i=1

fi‖→ 0

In such a case, we write S∑
∞
i=1 fi. The series ∑ fn is said to be absolutely summable if

∑
∞
i=1 ‖ f n‖< ∞.
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We know that absolute convergence implies convergence in case of series of real
numbers. This is not true in general for series of elements in a normed linear space.
But this implication holds if the space is complete.

Completeness of Lp (Riesz-Fisher Theorem).

Theorem 2.11. For 1 < p < ∞,Lp-spaces are complete. or If f1, f2, . . . form a Cauchy
sequence in Lp, that is ‖ fn− fm‖p→ 0 as n,m→ ∞ there is an f ∈ Lpsuch that

‖ fn− f‖p→ 0.

Proof: To show that the Cauchy sequence < fn > converges, we construct a subse-
quence of this sequence which converges almost every where on X as follows.

Since < fn > is a Cauchy sequence, then for ∈= 1
2 ,∃a+ ve integer n1 such that

n,m≥ n1⇒‖ fn− fm‖p <
1
2

Similarly for ∈= (1
2)

2, we can choose a+ ve integer n2 > n1 such that n,m≥ n2

⇒‖ fn− fm‖p < (
1
2
)2

In general having closed n1, . . . ,nk let nk+1 > nk be such that

‖ fn− fm‖p < (
1
2
)k+1

for all n,m≥ nk+1 we assert that the subsequence < fnk >
∞
k=1 converges almost every-

where to a limit function, f ∈ Lp.

From the construction of < fnk > it is evident that

∞

∑
i=1
‖ fnk−1− fnk‖p <

∞

∑
i=1

(
1
2
)k = (

1
2

1− 1
2

) = 1 (14)

gk = | fn1|+ | fn2− fn1|+ . . .+ | fnk+1− fnk|

For k = 1,2,3 . . . . Then < gk > is an increasing sequence of non-negative measurable
functions s. that

‖gp
k‖1 = ‖gk‖p

p

= [‖{| fn1|+ | fn2 + fn1|+ . . .+ | fnk+1 + fnk|}‖p]
p
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≤ [‖ fn1‖p +
k

∑
i=1
‖ fni+1− fni‖p]

p (by Minkowski’s inequality)

≤ [‖ fn1‖p +
k

∑
i=1
‖ fni+1− fni‖p]

p

< [‖ fn1‖p +1]p by (1)

< ∞ ⇒ ‖gp
k‖1 < ∞

or
∫
|g|pdu < ∞

Let g = limk→∞ gk. Then by Monotone convergence theorem and the above estimate of
gp

k , we have∫
|g|pdu = lim

k→∞

∫
|gp

k |du < ∞

i.e. ∫
[| fn1|+

∞

∑
i=1
| fni+1− fni|]pdu < ∞

Hence g ∈ Lp.
It follows the series

∞

∑
i=1
| fni+1(x)− fni(x)|

converges a. e and consequently the series

fni(x)
∞

∑
i=1

( fni+1(x)− fni(x))

Converges a.e. The kth partial sum of this series is f nk+1(+). and so the sequence
< f nk(x)>∞

k=1.
Converges to a some non-negative measurable function f (x) for all x ∈ A where A

is measurable and u(A) = 0. Define f (x) = 0 for all x ∈ A. It is easy to see that f is
measurable and complex valued on X .

We will now show that f ∈ Lp. Let ∈> 0 be given. Choose l so large that

s, t ≥ n1⇒‖ fs− ft‖p <∈

Then for k ≥ 1 and m > n1,we have

‖ fm− fnk‖p <∈⇒ (
∫
| fm− fnk|pdu)

1
p <∈
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⇒
∫
| fm− fnk|pdu <∈p (1) (1)

By Fatou’s Lemma, we have∫
| f − fm|pdu =

∫
lim
k→∞
| fnk− fm|pdu <∈p by (2)

Thus for each m > n1, the function f − fm is in Lp and so f = ( f − fm)+ fm is also in
Lp and limn→∞ ‖ f − fn‖p = 0. Thus f Lp is the limit of the sequence < f n > .

Hence Lp is complete.

Example 2.12. Consider the linear space of all n-tuples x = (x1, . . . ,xn) of scalars and
define the norm by

|x|∞ = max{|x1|, |x2|, . . . , |xi|} [or sup |xi|]

This space is denoted by ln
∞.

Show that (ln
∞,‖x‖∞) is a Banach space. (Also called the space of bounded se-

quence)

Solution. We first prove that ln is a normed linear space

[N1] Since each |xn| ≥ 0⇒‖x‖∞ ≥ 0
and ‖x‖∞ = 0⇔max{|x1|, |x2|, . . . , |xi|}

⇔ |x1|= 0, |x2|= 0, . . . |xn|= 0

⇔ x1, . . . ,xn = 0

⇔ (x1, . . . ,xn) = 0⇔ x = 0

[N2] Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn)

Then ‖x+ y‖∞ = max{|x1 + y1|, |x2 + y2|, . . . , |xn + yn|}.

≤max{|x1|+ |y1|, |x2|+ |y2|, |xn|+ |yn|}

≤max{|x1|, |x2|, . . . , |xn|}+max{|y1|, |y2|, . . . , |yn|}

= ‖x‖∞ +‖y‖∞.

[N2] if α is any scalar, then

‖αx‖∞ = max{|αx1|, |αx2|, . . . , |αxn|}

= |α|max{|x1|, |x2|, . . . , |xn|
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= |α|‖x‖∞.

Hence ln
∞ is a normed linear space. We now show that it is a complete space.

Let < xm >∞
m−1 be any cauchy sequence in ln

∞. Since each xm =< xm
1 ,x

m
2 , . . . ,x

m
n >.

Let ∈> 0 be given, ∃ a +ve integer m0 that l,m≥ m0

⇒‖xm− xl‖∞ <∈
⇒max{|xm

1 − xl
1|, |xm

2 − xl
2|, . . . , |xm

n − xl
n|<∈

⇒ |x(m)
1 − x(l)1 |<∈, i = 1, . . . ,n.

This shows that for fixed i,< x(m)
i >∞

m=1 is a Cauchy sequence of real (or complex)
numbers. Since C or R is complete, it must converge to some zi ∈ C or R. Thus the
Cauchy sequence < xm > converges to z=(z1,z2, . . . ,zn).

Rest of the proof is simple. Hence ln
∞ is a Banach space.

Show that l∞ is a Banach space.

Example 2.13. Let C(X) denote the linear space of all bounded continuous scalar val-
ued functions defined on a topological space X . Show that C(X) is a Banach space
under the norm

‖ f‖= sup
f∈C(x)

{| f (x)|,x ∈ X}

Solution: Vector addition and scalar multiplication are defined by

( f +g)x = f (x)+g(x),(α f )x = α f (x)

C(X) is linear space under these operations. We now show that C(X) is a normed linear
space.

[N1] Since | f (x)| ≥ 0 ∀ x ∈ X , we have

‖ f‖ ≥ 0

and ‖ f‖= 0⇔ sup{| f (x)|,x ∈ X}= 0

⇔ | f (x)|= 0 ∀ x ∈ X

⇔ f (x) = 0 ∀ x ∈ X

⇔ f = 0 (zero function).
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[N2] ‖ f +g‖= sup{|( f +g)(x)|;x ∈ X}

= sup{| f (x)+g(x)|;x ∈ X}

≤ sup{| f (x)|+ |g(x)|;x ∈ X}

≤ sup{| f (x)|;x ∈ X}+ sup{|g(x)|x ∈ X}

= ‖ f‖+‖g‖

[N3] ‖α f‖= sup{|(α f )(x)|;x ∈}

= sup{|α f (x)|;x ∈}

= sup{|α|| f (x)|;x ∈}

= |α|.sup{| f (x)|;x ∈}

= |α|‖ f‖.

Hence C(X) is a normed linear space. Finally we prove that C(X) is complete as a
metric space. Let < fn > be any Cauchy sequence inC(X). Then for a given ∈> 0,∃
positive integer m0 such that

m,n≥ m0⇒‖ fm− fn‖<∈
⇒ sup{|( fm− f n)(x)|;x ∈ X}<∈
⇒ sup{| fm(x)− f n(x)|;x ∈ X}<∈
⇒ | fm(x)− f n(x)|<∈ ∀x ∈ X .

But this is the Cauchy’s condition for uniform convergence of the sequence of bounded
continuous scalar valued functions. Hence the sequence < fn > must converge to a
bounded continuous function on X . It follows that C(X) is complete and hence it is a
Banach space.
Consider linear spaces R and C of real numbers and complex numbers respectively. We
introduce norm of a number x in R or C by defining ‖x‖= |x|. Under this norm, both R
and C are Banach spaces.

Consider the linear spaces Rn and CnCn of all n tuples x = (x1,x2, . . . ,xn) of real and
complex numbers. These spaces can be made into normed linear spaces by introducing
the norm defined by ‖x‖= (∑n

i=1 |Xi|2)
1
2

Exercise For Practice

Which of Following are Banach Spaces ?.
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Question 2.14. The linear space P[a,b] with the norm given by

‖x‖∞ = Sup.t∈[a,b]|x(t)|

where P[a,b] be set of all polynomials with real cofficients defined on [a,b].

Question 2.15. The real linear space C[−1,1] with the norm given by

‖x‖1 =
∫
−1

1|x(t)|dt

where integral is taken in the sense of Riemann.

Question 2.16. The space C of all convergent sequence x =< ξi > with the norm given
by

‖x‖∞ = sup
1≤ i<∞

|ξi|

where integral is taken in the sense of Riemann.

Question 2.17. The space C of all sequences x =< ξi > of bounded partial sums with
the norm given by

‖x‖∞ = sup
1≤n<∞

n

∑
i=1
|ξi|

where integral is taken in the sense of Riemann.

Question 2.18. The linear space C[a,b] with the norm given by

‖x‖p =
[∫ b

a
|x(t)|pdt

] 1
p
,1≤< ∞

Answers. Q. 2.0.14. No Q. 2.0.15. No. Q. 2.0.16. Yes Q. 2.0.17. Yes Q.
2.0.18. No.
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CHAPTER 3

Space of Linear Tranformations

Our aim is to study a class of spaces which are endowed with both a topological and
algebraic structure. This combination of topology and algebraic structures opens up the
possibility of studying linear transformation of one such space into another. First we
give some basic concepts and definitions.

Definition 3.1. Let N and N′ be linear spaces with the same system of scalars. A
mapping T from L into L′ is called a linear transformation if

T (x+ y) = T (x)+T (y)

T (αx) = αT (x)

or equivalently T (αx+βy) = αT (x)+βT (y). Also T (0) = T (0.0) = 0 and T (−x) =
−T (x).

A linear transformation of one linear space into another is a homomorphism of first
space into the second if is a mapping which preserves the linear operations.

Definition 3.2. Let N and N
′

be normed linear spaces with the same scalars and let T
be a linear transformation of N into N′. We say that T is continuous, mean that it is
continuous as a mapping of the metric space N into the metric space N′. [since every
normed space is a metric space d(x,y) = ‖x− y‖ ]. But by a result [Let X and Y be
metric spaces and f : X → Y. Then f is continuous⇔ xn→ x⇒ f (xn)→ f (x).] This
implies that xn→ x in N⇒ T (xn)→ T (x) in N′.

In the next theorem, we convert the requirement of continuity into several more
useful equivalent forms and show that the set of all continuous linear transformations
of N into N′ can itself be made into a normed linear space in a natural way.

Theorem 3.3. Let N and N′ be normed linear spaces and T a linear transformation of
N into N′. Then the following conditions on T are equivalent to one another.

(i) T is continuous

(ii) T is continuous at the origin, in the sense that xn→ 0⇒ T (xn)→ 0.

(iii) ∃ a real number K ≥ 0 with the property that ‖T (x)‖ ≤ K‖x‖ for every x ∈ N.
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(iv) If S = {x : ‖x‖ ≤ 1} is the closed unit sphere in N, then the image T (S) is a
bounded set in N′.

Proof. (i)⇒(ii) If T is continuous, then by the property of linear transformation we
have T (0) = 0 and it is certainly continuous at the origin. For if T is continuous and
{xn} is a sequence of points in N such that xn→ 0, then by the continuity of T , we have

xn→ 0⇒ T (xn)→ T (0)

⇒ T (xn)→ 0 [since T (0) = 0]

Conversely if T is continuous at the origin and {xn} is a sequence such that xn → x,
then

xn→ x⇒ xn− x→ 0

⇒ T (xn− x)→ T (0) = 0 [since T is continuous a the origin]

⇒ T (xn)−T (x)→ 0

Hence T is continuous.
(ii)⇒(iii) Suppose that T is continuous at the origin. We shall show that a real

number K ≥ 0 such that ‖T (x)‖ ≤ K‖x‖ for every x ∈ N.

We shall prove this result by contradiction. So suppose ∃ no such K. Therefore for
each +ve integer n, we can find a vector xn. that

‖T (xn)‖> n‖xn‖

Which is equivalent to

‖T (xn)‖
n‖xn‖

> 1 or ‖T ( xn

n‖xn‖
)‖> 1 (1)

we put yn =
xn

n‖xn‖ . Then ‖yn‖= xn
n‖xn‖ =

1
n → 0 as n→ ∞.

If follows from it that yn→ 0. But from (1) T ( xn
n||xn||)→ o. So T is not continuous

at the origin, which is contradiction to our assumption.
Conversely, suppose that ∃ a real number K ≥ 0 with the property that

‖T (x)‖ ≤ K‖x‖

for every x ∈ N. If {xn} is a sequence converging to zero, then

xn→ 0⇒‖xn‖→ ‖0‖= 0
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Therefore ‖T (xn)‖ ≤ K‖xn‖→ 0. Hence T (xn)→ 0 which proves that T is continuous
at the origin.

(iii)⇒(iv) Suppose first that ∃ a real number K ≥ 0 with the property that ‖T (x)‖ ≤
K‖x‖ for every K‖x‖ If S = {x : ‖x‖ ≤ 1} is the closed unit sphere in N

′
, then for all x,

we have

‖T (x)‖ ≤ K‖x‖

⇒ ‖T (x)‖ ≤ K,∀ x ∈ S.

Hence T (S) is a bounded set in N′.
Conversely, suppose that S = {x : ‖x‖ ≤ 1}is the closed unit sphere in N and T (S) is
bounded in N

′
. Then

‖T (x)‖ ≤ K,∀ x ∈ S.

If x = 0, then T (x) = T (0) = 0 and therefore in this case we have clearly ‖T (x)‖ ≤
K‖x‖. If x 6= 0, then x

‖x‖ ∈ S(∵ ‖ x
‖x‖‖= 1) and therefore ‖T ( x

‖x‖)‖ ≤ K
i.e. ‖T (x)‖ ≤ K‖x‖.

Space of Bounded Linear Transformation

Definition 3.4. A linear transformation T is said to be bounded if ∃ a non-negative real
number K such that

‖T (x)‖ ≤ K‖x‖,∀ x

K is called bound for T .

Remark. Thus according to the above theorem T is continuous iff it is bounded. From
condition (4) of our theorem, we can define the norm of a continuous linear transfor-
mation as follows:

Definition 3.5. Let T be a continuous linear transformation, then

‖T‖= sup{‖x‖;‖x‖ ≤ 1}

is called the norm of T . Obviously norm of T is the smallest M for which ‖T (x)‖ ≤
M‖x‖ holds for every T i.e. ‖T‖= inf{M;‖T (x)‖ ≤M‖x‖}.

Theorem 3.6. Let N and N′ be normed linear spaces and let T be a linear transformation
of N into N′. Then the T−1 exists and is continuous on its domain of definition iff ∃
exists a constant m > 0. that

m‖x‖ ≤ ‖T (x)‖ ∀ x ∈ N. (1)
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Proof. Let (1) hold. To show that T−1 exists and is continuous Now T−1 exists iff T is
one-one. Let x1,x2 ∈ N. Then

T (x1) = T (x2)⇒ T (x1)−T (x2) = 0

⇒ T (x1− x2) = 0

⇒ T‖x1− x2‖= 0

⇒ x1− x2 = 0 by (1)

⇒ x1 = x2

Hence T is one-one and so T−1 exists. Therefore to each y in the domain of T−1, ∃ a x
in N such that

T (x) = y⇒ x = T−1(y) (2)

Hence (1) is equivalent to

m‖T−1y‖ ≤ ‖y‖⇒ ‖T−1(y)‖ ≤ 1
m
‖y‖

⇒ T−1 is bounded

⇒ T−1 is continuous (by the above theorem).

Conversely, let T−1 exists and be continuous on its domain T (N). Let x ∈ N.

Since, there exists y ∈ T (N) such that

T−1(y) = x⇔ T (x) = y (3)

Again since T−1 is continuous, it is bounded so that there exists a +ve constant K, such
that

‖T−1y‖ ≤ K‖y‖⇒ ‖x‖ ≤ K‖T (x)‖ by (3)

⇒ m‖x‖ ≤ ‖T (x)‖ where m =
1
K

> 0

Theorem 3.7. Let N and N′ be normed linear spaces and let T be a bounded linear
transformation of N into N′. Let

a = sup{‖T (x)‖;x ∈ N,‖x‖= 1}

b = sup{‖T (x)‖
‖x‖

;x ∈ N;x 6= 0}
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c = inf{K;K ≥ 0;‖T (x)‖ ≤ K‖x‖,∀ x ∈ N}.

Then
‖T‖= a = b = c

and
‖T (x)‖ ≤ ‖T‖‖x‖,∀ x ∈ N.

Proof. By definition of norm

‖T‖= sup{‖T (x)‖;x ∈ N,‖x‖ ≤ 1}

By definition of c, we have

‖T (x)‖ ≤ c‖x‖,∀x ∈ N

and if ‖x‖ ≤ 1, then
‖T (x)‖ ≤ c,∀x ∈ N

and
sup{‖T (x)‖;x ∈ N,‖x‖ ≤ 1} ≤ c

i.e. ‖T‖ ≤ c.
Also by definition of b and c, it is clear that c≤ b.
Again if x 6= 0, then

‖T (x)‖
‖x‖

= ‖T ( x
‖x‖

)‖.

And x
‖x‖ has norm 1. Hence we conclude from the definitions of b and a that b≤ a. But

it is evident that

a = sup{‖T (x)‖;x ∈ N,‖x‖= 1} ≤ sup{‖T (x)‖;x ∈ N,‖x‖ ≤ 1}
⇒ a≤ ‖T‖.

Thus we have shown that

‖T‖ ≤ c≤ b≤ a≤ ‖T‖

⇒ ‖T‖= a = b = c.

Finally, definition of b shows that

‖T (x)‖
‖x‖

≤ sup{‖T (x)‖
‖x‖

;x ∈ N,x 6= 0}= b = ‖T‖
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⇒ ‖T (x)‖ ≤ ‖T‖‖x‖.

Remark. Now we shall denote the set of all continuous (or bounded) linear transfor-
mation of N into N′ by B(N,N′) [where letter B stands for boundedness].

Theorem 3.8. If N and N′ are normed linear spaces, then the set B(N,N′) of all con-
tinuous linear transformation of N into N′ is itself a normed linear space with respect
to the pointwise linear operations and the norm defined by

‖T‖= sup{‖T (x)‖;‖x‖ ≤ 1}

Further if N′ is a Banach space, then B(N,N′) is also a Banach space.

Proof. Let B(N,N′) be the set of bounded linear transformation on N into N′. Let
T1,T2 ∈ B(N,N′). Define T1 +T2 by

(T1 +T2)(x) = T1(x)+T1(x)

and αT by
(αT )(x) = αT (x), ∀ x ∈ N.

It can seen that under these operations of addition and scalar multiplication, B(N,N′)is
a vector space since we know that the set S of all linear transformation from a linear
space into another linear space is itself a linear space w.r.t. to the pointwise linear
operations. Therefore in order to prove that B(N,N′) is a linear space, it is sufficient
to show that B(N,N′) is a subspace of S. Let T1, T2 ∈ B(N,N′). Then T1 and T2 are
bounded, so ∃ real numbers K1 ≥ 0 and K2 ≥ 0 such that

‖T1(x)‖ ≤ K1‖x‖

and
‖T2(x)‖ ≤ K2‖x‖

for all x ∈ N.

If α,β are any two scalars, then

‖(αT1 +βT2)(x)‖= ‖αT1(x)+(βT2)(x)‖
= |α|‖T1(x)‖+ |β |‖T2(x)‖
≤ (|α|K1 + |β |K2)‖x‖
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Thus αT1 +βT2 is bounded and so

αT1 +βT2 ∈ B(N,N′)

This proves that B(N,N′) is a linear subspace of S.
Now we prove that B(N,N′) is a normed linear space with respect to the norm

defined by
‖T‖= sup{‖T (x)‖;‖x‖ ≤ 1]

which is clearly non-negative. We have
(i) ‖T‖= 0⇔ sup{‖T (x)‖;‖x‖ ≤ 1}= 0

⇔ sup{‖T (x)‖
‖x‖

;x 6= 0}= 0

⇔ ‖T (x)‖
‖x‖

= 0 ∀ x ∈ N,x 6= 0

⇔‖T (x)‖= 0⇔ T = 0

(ii) ‖αT‖= sup{‖(αT )(x)‖;‖x‖ ≤ 1}

= sup{‖α.T (x)‖;‖x‖ ≤ 1}

= sup{|α|‖T (x)‖;‖x‖ ≤ 1}

= |α|.sup{‖T (x)‖;‖x‖ ≤ 1}

(iii) ‖T1 +T2‖= sup{‖(T1 +T2)(x)‖;‖x‖ ≤ 1}

= sup{‖T1(x)+T2(x);‖x‖ ≤ 1}

≤ sup{‖T1(x)‖;‖x‖ ≤ 1}+ sup{‖T2(x)‖;‖x‖ ≤ 1}

= ‖T1‖+‖T2‖

Hence B(N,N′) is normed linear space. It remains to prove that if N′ is a Banach
space, then B(N,N′) is also a Banach space. For if; suppose N′ is a Banach space.
Then N′ is complete. It sufficiency to show that is B(N,N′) complete. Let {Tn} be an
arbitrary Cauchy sequence in B(N,N′), then for any x ∈ N,

‖Tm(x)−Tn(x)‖= ‖(Tm−Tn)(x)‖
≤ ‖Tm−Tn‖‖x‖ (∵ ‖T (x)‖ ≤ ‖T‖ ‖x‖) (1)
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This shows that {Tn} is a cauchy sequence in N′. Since N′ is complete, ∃ T (x) in N′

such that Tn(x)→ Tn, ∀x. i.e.T (x) = limn→∞ Tn(x).
Now defines a mapping T from N to N

′
. It is obvious that T is linear. For

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x)+ lim
n→∞

Tn(y)

= T (x)+T (y)

and

T (αx) = lim
n→∞

Tn(αx)

= lim
n→∞
{αTn(x)}

Now {Tn} being a Cauchy sequence, limn→∞{‖Tn−Tm‖}= 0 and since

|(‖Tn‖−‖Tm‖)| ≤ ‖Tn−Tm‖

it follows that
lim

m,n→∞
|(‖Tn‖−‖Tm‖)|= 0

Therefore {Tn} is convergent and hence bounded i.e. ∃ a real no. K such that

‖Tn‖ ≤ K, n = 1,2, . . .

and therefore
‖Tn(x)‖ ≤ ‖Tn‖‖x‖ ≤ K‖x‖, ∀ n

Thus
‖T (x)‖= lim

m,n→∞
‖Tn(x)‖ ≤ K‖x‖

⇒ T is bounded.
Hence T ∈ B(N,N′). If we prove that Tn→ T. Then we have that B(N,N′) is complete.
For let ∈> 0, choose n0 so that

‖Tm−Tn‖<
∈
2

if m,n > n0.

Then
‖Tm(x)−Tn(x)‖<

∈
2
‖x‖ for m,n > n0, x ∈ N.
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Letting n→ ∞, we get

‖Tm(x)−Tn(x)‖<
∈
2
‖x‖ for m,n > n0, x ∈ N

since
T (x) = lim

m,n→∞
Tn(x).

This implies that for m > n0 and ‖x‖ ≤ 1, we have

‖T (x)−Tn(x)‖= ‖T (x)−Tm(x)+Tm(x)−−Tn(x)‖
≤ ‖T (x)−Tm(x)‖+‖Tm(x)−Tn(x)‖
≤ ‖T (x)−Tm‖||x||+‖Tm−Tn‖||x|| [∵ ‖x‖ ≤ 1]

<
∈
2
+
∈
2
=∈

This shows that

‖T −Tn‖= sup{‖T (x)−Tn(x)‖;‖x‖ ≤ 1}<∈

Hence Tn→ T . Thus we have proved that B(N,N′) is a complete normed linear space.

Note. By the definition of bounded linear transformation, it is clear that a continuous
linear transformation is bounded linear transformation and conversely. Also if N and
N′ are normed linear spaces, the space L(N,N′) or B(N,N′) is also called space of all
continuous linear transformation. In notation if N = N′, the space is also denoted as
B(N).

Definition 3.9. A continuous linear transformation of a normed linear space into itself
is called operator on N. The normed linear space consisting of all linear operators on N
is denoted by B(N). The above theorem asserts that if N is a Banach space then B(N)

is also a Banach Space.

Definition 3.10. An algebra is a linear space whose vectors can be multiplied in such a
way that

(i) x(yz) = (xy)z

(ii) x(y+ z) = xy+ yz and (x+ y)z = xz+ yz

(iii) α(xy) = (αx)y = x(αy) for all scalars α.

Thus an algebra is a linear space that is also a ring in which (iii) holds.
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If the linear operators T1 and T2 are multiplied in accordance with the formula

(T1T2)(x) = T1(T2(x)), ∀ x ∈ N

Then β (N) is a algebra in which multiplication is related to the norm by

‖T T ′‖ ≤ ‖T‖‖T ′‖

This relation is proved by the following computation

‖T T ′‖= sup{‖(T T ′)(x)‖;‖x‖ ≤ 1}
= sup{‖T (T ′(x))‖;‖x‖ ≤ 1

≤ sup{‖T‖‖T ′(x)‖;‖x‖ ≤ 1}
= ‖T‖{sup‖T ′(x)‖;‖x‖ ≤ 1}
= ‖T‖‖T ′‖ (1)

Since we know that addition and scalar multiplication are jointly continuous in normed
linear space, they are also jointly continuous in β (N). Also multiplication is continu-
ous, since if

Tn→ T in B(N) and T
′

n→ T
′
in B(N).

Then
TnT ′n → T T ′.

Since
||TnT ′n−T T ′|| ≤ ‖Tn‖‖T ′n−T ′‖+‖Tn−T‖‖T ′‖.

But {Tn} being convergent sequence in B(N), it must be bounded so M such that

‖TnTn−T T ′‖ ≤M‖T ′n−T ′‖+‖T ′‖.‖Tn−T‖→ 0 as n→ ∞.

We also remark that when N 6= {0} then the identity transformation I is an identity for
the algebra β (N). In this case we clearly have

‖I‖= 1

for
‖I‖= sup{‖I(x)‖;‖x‖= 1}= sup{‖x‖;‖x‖= 1}= 1.
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Definition 3.11. Let N and N′ be normed linear spaces. A one to one linear transfor-
mation T of N into N′ such that ‖T (x)‖= ‖x‖ for every x in N called isometric isomor-
phism. N is said to be isometrically isomorphic to N′ if an isometric isomorphism of N
onto N′.

Theorem 3.12. If M is a closed linear subspace of a normed linear space N and if
T : N→N/M defined by T (x)= x+M. Show that T is continuous linear transformation
for which ‖T‖ ≤ 1.

Proof. Since M is closed, N/M is a normed linear space [since every closed subspace
of normed space is normed] with the norm of a coset x+M in N/M defined by

‖x+M‖= inf{‖x+m‖;m ∈M}
T (x1 + x2) = x1 + x2 +M

= x1 +M+ x2 +M [definition of N/M]

= T (x1)+T (x2)

T (λx) = λx+M = λ (x+M) = λT.

⇒ T is linear.

‖T x‖= ‖x+M‖= inf{‖x+m‖;m ∈M}
≤ inf{‖x‖+‖m‖;m ∈M}
≤ inf‖x‖+ inf‖m‖;m ∈M

= ‖x‖+0.

[since M is subspace of N,0 is the element of M which has smallest norm namely zero]
Then

‖T x‖ ≤ ‖x‖ ∀ n ∈ N

⇒ T is bounded
Since

sup
x 6=0

‖T x‖
‖x‖

≤ 1⇒‖T x‖ ≤ ‖x‖ ≤ 1

⇒ sup
x 6=0
{‖T (x)‖;‖x‖ ≤ 1} ≤ ‖x‖ ≤ 1

⇒‖x‖ ≤ 1
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Theorem 6. Let E and F be two normed linear spaces. Then they are topologically
isomorphic iff ∃ m,M and a linear mapping T : E→ F , which is one-one and onto such
that

m‖x‖ ≤ ‖T x‖ ≤M‖x‖ ∀ x ∈ E

Proof. Let E and F be topological isomorphic, then by definition ∃ linear mapping
T : E → F such that T is continuous, bijective and T−1 exists and is also continuous.
Then by using theorem on continuous of linear transformation, then ∃M such that

‖T x‖ ≤M‖x‖ ∀ x ∈ E

Also by the last result, ∃ m > 0 such that

m‖x‖ ≤ ‖T x‖ ≤M‖x‖ .

Since T−1 exists and is continuous Then we have linear one-one onto mapping such
that ∃ m0,M > 0 such that

m‖x‖ ≤ ‖T x‖ ≤M‖x‖, ∀ x ∈ E

conversely if ∃ T : E→ F such that T is one-one onto and ∃m,M such that

m‖x‖ ≤ ‖T (x)‖ ≤M‖x‖, ∀ x ∈ E.

Since
m‖T (x)‖ ≤M‖x‖.

Hence T is bounded.
By the theorem on continuity (or bounded)⇒ T is continuous.
Now from m‖x‖ ≤ ‖T (x)‖, T is 1−1 and onto exists
⇒ T−1 is continuous. Hence T is bijective, continuous and T−1 exists and is continuous
[T is open]
⇒ E and F are topologically isomorphic.

Remark. On a finite dimensional space Cn, or all the norms are equivalent in the sense
that they define same topology up to topologycally isomorphism.
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CHAPTER 4

Conjugate Spaces and Hahn Banach Theorem

This chapter deals primarily (through not exclusively) with the important class of topo-
logical vector spaces, namely, the conjugate spaces. The highlights, from the theoretical
as well as the applied standpoints are the Hahn-Banach theorems with applications and
Riesz-Representation theorem for bounded linear functionals on Lp

Definition 4.1. Let E and F be normed linear spaces. Then E and F are said to be
equivalent normed spaces iff ∃ T > 0, M,m > 0 such that

m‖x‖ ≤ ‖T x‖ ≤M‖x‖, ∀ x ∈ E.

Conjugate of an Operator: Let N be a normed linear space and T a continuous linear
operator on N∗, Then for any functional the composite mapping ( f oT ) is a continuous
linear functional since

( f oT )(αx+βy) = f (T (αx+βy); x,y ∈ N

= f (α.T (x)+βT (y))

= α f (T (x))+β f (T (y))

= α( f oT )(x)+β ( f oT )(y)

Moreover since f and T both are continuous, f oT is also continuous Hence f ∈ N∗.
Define a mapping

T ∗ : N∗→ N∗

by
T ∗( f )→ f oT, ∀ f ∈ N∗.

This mapping is called the conjugate of the operator T.
Also we note that

(T ∗( f ))(x) = f (T (x)), ∀ x ∈ N.

We assert that T ∗ is linear, for

(T ∗)(α f +βg)(x) = (α f +βg)(T x)
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= α f (T (x))+β .g(T (y))

= α( f T )(x)+β (gT )(x)

= α(T ∗( f ))(x)+β (T ∗(g))(x)

= (αT ∗( f )+βT ∗(g))(x)

T ∗ is also bounded (continuous) and hence

‖T ∗‖= sup{‖(T ∗ f )‖;‖ f‖ ≤ 1}
= sup{|T ∗( f )(x)|;‖ f‖ ≤ 1and‖x‖ ≤ 1}
= sup{| f (T (x))|;‖ f‖ ≤ 1 ‖x‖ ≤ 1}
≤ sup{‖ f‖‖T‖‖x‖;‖ f‖ ≤ 1,‖x‖ ≤ 1}
≤ ‖T‖ (1)

Since N is a normed linear space, for a non-zero vector x in N, there exists a functional
f on N such that

‖ f‖= 1 and f (T (x)) = ‖T (x)‖ [∵ ‖ f‖= 1and f (x) = ‖x‖]

‖T‖= sup{‖T x‖;‖x‖ ≤ 1}
≤ sup{ f (T (x));‖x‖ ≤ 1and‖ f‖ ≤ 1}
= sup{|T ∗( f )(x)|;‖ f‖ ≤ 1and‖x‖ ≤ 1}
= sup{‖(T ∗ f )‖‖x‖;‖ f‖ ≤ 1and‖x‖ ≤ 1}
≤ sup{‖(T ∗ f )‖;‖ f‖ ≤ 1}
= ‖T ∗‖ (2)

From (1) and (2), it follows that

‖T‖= ‖T ∗‖ (3)

consider the mapping
φ : B(N)→ B(N∗)

defined by
φ(T ) = T ∗, ∀ T ∈ B(N)

Let T1,T2 ∈ B(N). Then

φ(αT1 +βT2) = (αT1 +βT2)
∗
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But for all f ∈ N∗ and x ∈ N, we have

[(αT1 +βT2)
∗( f )](x) = f [(αT1 +βT2)

∗(x)]

= f [αT1(x)+βT2(x)]

= α f (T1(x))+β f (T2(x))

= α( f T1)(x)+β ( f T2)(x)

= α(T ∗1 ( f ))(x)+β (T ∗2 ( f ))(x)

= (α[T ∗1 ( f )]+β [T ∗2 ( f )])(x)

= {(αT ∗1 +βT ∗2 )( f )}(x)

Therefore, we have

φ(αT1 +βT2) = (αT1 +βT2)
∗

= αT ∗1 +βT ∗2
= αφ(T1)+βφ(T2),

which shows that in φ linear. Also φ is one to one, since

φ(T1) = φ(T2)

⇒ T ∗1 = T ∗2
⇒ T ∗1 ( f ) = T ∗2 ( f ) ∀ f ∈ N∗

⇒ [T ∗1 ( f )](x) = [T ∗2 ( f )](x)

⇒ f (T1(x)) = f (T2(x))

⇒ T1−T2 = 0

⇒ T1 = T2

Moreover
‖φ(T )‖= ‖T ∗‖= ‖T‖

Hence φ is an isometric isomorphism and it also preserves norm. If f ∈ N and x ∈ N,

then

((T1T2)
∗( f ))(x) = f (T1T2)(x)

= f (T1(T2(x)))

= ( f T1)(T2(x))

= (T ∗1 ( f ))(T2(x))
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= T ∗2 (T
∗

1 ( f ))(x)

= [(T ∗2 T ∗1 )( f )](x)

i.e.
(T1T2)

∗ = T ∗2 T ∗1

and if I is an identity operator, then

[I∗( f )](x) = f [I∗(x)] = f (x)

= (I( f ))(x)

⇒ I∗ = I

Thus we have proved the following:

Theorem 4.2. If T is an operator on a normed linear space N, Then its conjugate T ∗ is
defined by equation

[T ∗( f )](x) = f [T (x)]

is an operator on N and the mapping T ∗ is an isometric isomorphism of B(N) into
B(N∗) which reverses the product and preserves the identity transformation.

Theorem 4.3. A non empty subset X of a normed linear space N is bounded then f (x)
is a bounded set of numbers for each f in N∗.

Proof. Since | f (x)| ≤ ‖ f‖‖x‖ it follows that if X is bounded, then f (x) is also bounded
for each f . To prove the converse, we write X = {xi}. We now use natural imbedding
[x→ Fn] to map X to the subset (Fxi) of N∗∗. The assumption that f (x) = { f (xi)} is
bounded for each f implies that {Fxi( f )} is bounded for each f . Moreover since N∗

is complete. The uniform boundedness theorem shows that {Fxi} is a bounded subset
of N∗∗. Since natural imbedding preserves norms, therefore X is evidently a bounded
subset of N∗∗.

Conjugate Spaces

We know that the spaces R and C are real and complex complete normed linear spaces.
If N is an arbitrary normed linear space, then the set B(N,R) or B(N,C)of all continu-
ous linear transformations of N in R or C is a normed linear space. This space is called
the conjugate space of N and is denoted by N∗.
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The elements of N∗ are called continuous linear functionals or simply functionals.
The norm of a function f ∈ N∗is defined as

‖ f‖= sup{|‖ f (x)‖;‖x‖ ≤ 1|}

Since R and C are Banach spaces, it follows that B(N,R) and B(N,C) are also Banach
spaces. Thus N∗ is also a Banach space.

Hahn-Banach Theorem and its applications

Hahn-Banach Theorem is a strong tool for functional analysis. In fact the theory of con-
jugate spaces rest on the Hahn-Banach Theorem which asserts that any linear functional
on a linear subspace of a normed linear space can be extended linearly and continuously
to the whole space without increasing its norm.

Theorem 4.4. Let M be a linear subspace of a normed linear space N and let f be a
functional defined on M. Then f can be extended to a functional f0 defined on the
whole space N such that

fm(x) = f (x), ∀x ∈M and ‖ f0‖= ‖ f‖

Proof. Let f be a functional defined on a subspace M of a real normed linear space N
and let x0 be any vector of N which is not in M. Consider the set {M+ tx0} of elements
x+ tx0 where x ∈M and t is an arbitrary real number. Then {M + tx0} is obviously a
linear manifold of N Every element of {M+ tx0} is uniquely representable in the form
x+ tx0, for if 0 there exists two representations y1 = x1 + t1x0 and y2 = x2 + t2x0, we
can suppose that t1 6= t2 for 0 otherwise x1 + t1x0 = x2 + t2x0 would imply x1 = x2 and
the representation will be unique. Then

x1− x2 = (t2− t1)x0

⇒ x0 =
x1− x2

t2− t1

But this is impossible since x0 ∈M. and x1,x2. Hence t1 = t2 and Thus x1 = x2 which
proves the uniqueness.

For any two elements x1,x2 ∈M, we have

f (x1)− f (x2) = f (x1− x2)

≤ | f (x1− x2)|
= ‖ f‖{‖(x1 + x0)− (x2 + x0)‖}
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= ‖ f‖{‖x1 + x0‖+‖(x2 + x0)‖}

so that
f (x1)−‖ f‖‖x1 + x0‖ ≤ f (x2)+‖ f‖‖x2 + x0‖

Since x1 and x2 are arbitrary in M,
We have

sup
x∈M
{ f (x)−‖ f‖‖x+ x0‖} ≤ inf

x∈M
{ f (x)−‖ f‖‖x+ x0‖}

Thus there exists a real no which satisfies the inequality

sup
x∈M
{ f (x)−‖ f‖‖x+ x0‖} ≤ α ≤ inf

x∈M
{ f (x)−‖ f‖‖x+ x0‖} (1)

Now let y be an arbitrary element of {M + t x0}. Then y is uniquely expressible in the
form y = x+ tx0. We define a function φ on {M+ t x0} by

φ(y) = f (x)− tα ∀ y ∈ {M+ t x0}

where α is fixed real number satisfying (1). Obviously φ coincides with f in M and
the linearity of f implies that φ is linear. We shall show that φ in bounded and has the
same norm as f (x). We distinguish two cases:
(i) t > 0. Since x

t ∈M, the relation (1) yields

φ(y) = f (x)− tα

= t{ f (
x
t
)−α}

≤ t{‖ f‖‖x
t
‖+ x0}

= ‖ f‖‖x+ tx0‖
= ‖ f‖‖y‖ (2)

(ii) t < 0, In this case (i) yields

f (
x
t
)−α ≥−‖ f‖‖x

t
+ x0‖

=− 1
|t|
‖ f‖‖y‖

=
1
t
‖ f‖‖y‖

and therefore

φ(y) = f (x)− tα
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= t{ f (
x
t
)−α}

≤ t.
1
t
‖ f‖‖y‖

= ‖ f‖‖y‖ (3)

Thus from (2) and (3), it follows that

φ(y)≤ ‖ f‖‖y‖ ∀ y ∈ {M+ tx0}

Replacing y by −y in (1), we have

−φ(y)≤ ‖ f‖‖y‖ ∀ y ∈ {M+ tx0}

Therefore φ(y)≤ ‖ f‖‖y‖ ∀ y ∈ {M+ tx0} and therefore

‖φ‖ ≤ ‖ f‖ (4)

But φ being an extension of f from M to {M+ tx0} we have

‖φ‖ ≥ ‖ f‖ (5)

Hence from (4) and (5)
‖φ‖= ‖ f‖

Now if the elements of the set N−M are arranged in transfinite sequence x0,x1,x2, . . . ,xk, . . . ,

we extend the functional successively to the spaces

{M+ tx0}= M0, {M0 + tx1}= M1

and so on since the norm remains the same at each step, continuing the above process,
we arrive at a functional f0 which satisfies both the conditions, namely

f0(x) = f (x) ∀ x ∈M and ‖y0‖= ‖ f‖

This completes the proof of the theorem.

Complex Form of Hahn Banach Theorem

When N is complex and f is a complex valued function defined on M, let f1 and f2 be
the real and imaginary parts of f . Thus for each x ∈M, we have

f (x) = f1(x)+ i f2(x)
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and
| f1(x)|, | f2(x)| ≤ | f (x)| ≤ ‖ f‖‖x‖.

we claim that f1 and f2 are real valued linear functionals.
Let α ∈ R and consider

|α f1(x)|, |α f2(x)| ≤ | f (x)| ≤ ‖ f‖‖x‖ (1)

Since f is a linear functional, (1) must equal

f1(αx) = α f1(x) and f2(αx) = α f2(x)

In a similar fashion, we can show that sums are also preserved.
Now consider

i( f1(x)+ i f2(x)) = i f (x) = f (ix) = f1(ix)+ i f2(ix)

Equating real and imaginary parts, we have

f1(ix) =− f2(x) and f2(ix) =− f1(x)

Thus

f (x) = f2(x)− i f1(x) (2)

Now by the above proved theorem, there exists a function F1 defined on the whole space
extending f1 such that

‖F1‖= ‖ f1‖ and F1(x) = f1(x) ∀ x ∈M.

We now define

F(x) = F1(x)− iF1(ix) (3)

We now assert that F extends f . To prove this let x ∈ M and consider (3). Since F1

extends f1, so
F1(x)− f1(x) and F1(ix) =− f2(x)

Thus
F(x)− f1(x)+ i f2(x) = f (x)

and hence F extends f .
Moreover by (3)

F(ix) = F1(ix)− iF1(i2x)
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= F1(ix)− iF1(−x)

= F1(ix)− iF1(x)

F(ix) = [F1(x)− iF1(ix)]

= iF1(x)−F1(ix)

we see that
F(ix) = iF(x)

and therefore is a complex linear functional.
Put F(x) = reiθ , then

|F(x)|= |reiθ |
= r[eiθ ]

= r

Thus F(eiθ x) is a purely real quantity which implies that imaginary part of F(eiθ x) i.e
F1(eiθ x) must be zero.Thus

F(eiθ x) = F1(eiθ x)

and we have

|F(x)|= |F1(eiθ x)|
≤ ‖F1‖.‖x‖.|eiθ |
= ‖ f1‖.‖x‖
= ‖ f‖.‖x‖

which gives ‖F‖ ≥ ‖x‖.
Moreover F being an extension of f , we have

‖F‖ ≥ ‖ f‖.

Hence ‖F‖= ‖ f‖ and the proof is complete.

Applications of Hahn-Banach Theorem

Theorem 2. If N is a normed linear space and x0 is a non-zero vector in N, then
there exists a functional f0 in N∗ such that f0(x0) = ‖x0‖ and ‖ f0‖= 1. In particular if
x 6= y(x,y ∈ N), there exists a vector f ∈ N∗ such that f (x) 6= f (y).

Proof. Consider the subspace
M = {αx0}
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consisting of all scalar multiplies of x0 and consider the functional f defined on M as
follows :

f : M→ F and f (αx0) = α‖x0‖

Clearly, f is a linear functional with the property

f (x0) = ‖x0‖
‖x0‖| f (αx0)|= |α|.‖x0‖

= ‖αx0‖ (1)

‖ f‖= sup{| f (αx0)|;‖αx0 ≤ 1‖}
= sup{‖αx0‖;‖αx‖ ≤ 1}
≤ 1

But if there were a real constant k such that k < 1 and | f (αx0)| ≤ k‖αx0‖ ∀ αx0 ∈M.

This will contradict the equality defined by (1). Thus ‖ f‖= 1. We have thus established
that f is a bounded linear functional defined on the subspace M with norm 1. Now by
Hahn-Banach Theorem, the functional f can extended to a functional f0 in N∗ such that

f0(x0) = f (x0) and ‖ f0‖= ‖ f‖= 1

This completes the proof.
In the particular case since x 6= y, x 6= 0 and so by the above result, there exists an f ∈N∗

such that

f (x− y) = ‖x− y‖ 6= 0

⇒ f (x)− f (y) 6= 0

⇒ f (x) 6= f (y).

Remark.
(1) This result shows that N∗ separates the vectors of N.

(2) This result also shows that Hahn-Banach Theorem guarantee that any normed linear
space has rich supply of functionals.

Theorem 4.5. Let M be a closed linear subspace of a normed linear space N and let
φ be the natural mapping (homomorphism) of N onto N/M defined by φ(x) = x+M.

Show that φ is a continuous (or bounded) linear transformation for which

‖φ‖ ≤ 1.
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Proof. Since M is closed and N/M is a normed linear space with the norm of a
coset x+M in N/M defined by

‖x+M‖= inf{‖x+m‖;m ∈M}

φ is linear: Let x,y be any two elements of N and α,β be any scalars. Then

φ(αx+βy) = (αx+βy)+M

= (αx+M)+(βy+M)

= α(x+M)+β (y+M)

= αφ(x)+βφ(y)

⇒ φ is linear.

φ is continuous:

‖φ(x)‖= ‖x+M‖
= inf{‖x+m‖;m ∈M}
≤ ‖x+m‖ ∀ m ∈M

In particular for m = 0, we have

‖φ(x)‖ ≤ ‖x‖= 1‖x‖ ∀ x ∈ N

It follows that φ is bounded by the bound 1 and consequently φ is continuous.
Further

‖φ‖= sup{‖φx‖;x ∈ N;‖x‖ ≤ 1}
≤ sup{‖x‖;x ∈ N;‖x‖ ≤ 1}
≤ 1

Thus ‖φ‖ ≤ 1.

Theorem 4.6. Let M be a closed linear subspace of a normed linear space N and let x0

be a vector not in M, then there exists a functional F in N∗ such that

F(M) = {0} and F(x0) 6= 0
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Proof. Consider the natural map φ : N → N/M defined by φ(x) = xM. As shown in
the last theorem it is a continuous linear transformation and if m ∈ M, then φ(m) =

m+M = 0, where 0 denotes the zero vector of M in N/M. In other words

φ(M) = {0}

Also, since x0 /∈M, we have

φ(x0) = x0 +M 6= 0.

Hence by theorem 1, there exists a functional f ∈ (N/M)∗ such that

f (x0 +M) = ‖x0 +M‖ 6= 0

We now define f by F(x) = f (φ(x)). Then F is a linear functional on N. With the
desired properties as shown below:
F is linear:

F(αx+βy) = f (φ(αx+βy)) = f (αx+βy+M)

= f (α(x+M)+β (y+M))

= α f (x+M)+β f (y+M)

= α f (φ(x))+β f (φ(y))

= αF(x)+βF(y)

F is bounded:

|F(x)|= | f (φ(x)|
≤ ‖ f‖‖φ(x)‖
≤ ‖ f‖‖φ‖‖x‖
≤ ‖ f‖‖x‖ [since‖φ‖ ≤ 1]

Since f is bounded (being a functional). It follows from the above inequality that F is
bounded. Thus F is a functional on N i.e. F ∈ N∗. Further if m ∈M, then

F(m) = f (φ(m)) = f (0) = 0

Thus
F(M) = 0 ∀m ∈M

and
F(x0) = f (φ(x0)) = f (x0 +M) 6= 0.
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Theorem 4.7. Let M be a closed linear subspace of a normed linear space N and let
x0 be a vector not in M. If d is the distance from x0 to M, show that there exists a
functional fo ∈ N∗ such that

f0(M) = {0}, f0(x0) = d and ‖ f0‖= 1.

Proof. Since by definition

d = inf{‖x0 +m‖;m ∈M}

Since M is closed and x0 /∈M⇒ d > 0.
Now consider the subspace

M0 = {x+αx0;x ∈M and α real}

Spanned by M and x0. Since x0 /∈ M, the representation of each vector y in M0 in the
form y = x+αx0 is unique. For if there exists two scalars α1 and α2 and vectors x1 and
x2 in M such that

y = α1x0 + x1 and y = α2x0 + x2

⇒ (α1−α2)x0 = x2− x1

⇒ x0 =
x2− x1

α1−α2

⇒ x0 ∈M, which is a contradiction,

since x0 /∈M by our assumption. So each y in M0 is unique.
Define the map f : M0→ R by

f (y) = αd

where y = x+αx0 and d as in hypothesis. Because of the uniqueness of y, the mapping
f is well defined. Also f is linear on M0, and

f (x0) = f (0+1.x0) = 1.d and if m ∈M

then
f (m) = f (m+0.x0) = 0.d = 0

so that
f (M) = {0}.
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We now prove that ‖ f‖= 1.
Since

‖ f‖= sup
‖y‖=1

{| f (y)|
‖y‖

;y ∈M0,y 6= 0}

= sup{| f (x+αx0)|
‖x+αx0‖

;x ∈M,α ∈ R}

= sup{ |αd|
‖x+αx0‖

;x ∈M;α ∈ R,α 6= 0}

= sup{ |d|
‖x0 +

x
α
‖

;x ∈M,α ∈ R,α 6= 0}

= d[inf{‖x0− z‖;z ∈M}]−1

= d.
1
d

= 1.

Thus f is a linear functional on M0 such that

f (M) = {0}, f (x0) = d and ‖ f‖= 1. (*)

Hence by Hahn Banach Theorem, there exists a functional f0 on the whole space N
such that

f (y) = f0(y) ∀ y ∈M0 and‖ f‖= ‖ f0‖

Thus from (*)
f0(M) = {0}, f0(x0) = d and‖ f0‖= 1.

Riesz-Representation Theorem for Bounded Linear Functionals on Lp

Definition 4.8. A Linear functional on a real vector space T : V → R, which satisfies
the properties

T (x+w) = T (x)+T (w)

T (αx) = αT (x).

Definition 4.9. A linear functional is bounded iff its Range is bounded.

Theorem 4.10. Let F be a bounded linear function on Lp, 1 ≤ p < ∞. Then there is a
function g in Lq such that

F( f ) =
∫

f g, f ∈ Lp is arbitrary.
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Proof. Let F be a bounded linear functional on Lp,1≤ p < ∞. We put

χs(x) =

{
1 for 0≤ x < s
0 for s≤ x≤ 1

and show that
Φ(s) = F(χs(x))

is absolutely continuous For this purpose, let {(si, ti)} be any finite collection of non-
overlapping subintervals of [0,1] of total length less than δ .

Then
n

∑
i=1
|Φ(ti)−Φ(si)|=

n

∑
i=1

|Φ(ti)−Φ(si)|
[Φ(ti)−Φ(si)]

[Φ(ti)−Φ(si)]

=
n

∑
i=1

sgn[Φ(ti)−Φ(si)][Φ(ti)−Φ(si)]

= F{
n

∑
i=1

sgn[χti(x)−χsi(x)][χti(x)−χsi(x)]}}

≤ ‖F‖‖
n

∑
i=1

sgn[χti(x)−χts(x)][χti(x)−χsi(x)]}‖

= ‖F‖{
∫ 1

0
|

n

∑
i=1

sgn[χti(x)−χsi(x)][χti(x)−χsi(x)] |
pdx}1/p.

If we take δ = ∈p

‖F‖p , then it follows that total variation Φ is less than ∈ over any fi-
nite collection of disjoint intervals of total length less than δ . Thus Φ is absolutely
continuous.

Also we know that a function F is absolutely continuous iff it is indefinite integral.
Therefore an integrable function g such that

Φ(s) =
∫ s

0
g

Thus

(χs) =
∫ 1

0
gχs where χs =

{
1, if x ∈ s
0, if x /∈ s

Since every step function on [0,1] is [equal except at a finite number of pts to] to a
suitable linear combination ∑ciχsi, we must have

F(ψ) =
∫ 1

0
gψ (*)
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For each step function ψ by the linearity of F and of the integral.
Let f be any bounded measurable function on [0,1] [hence Lebesgue integrable].

Then it follows that there is a sequence < ψn > of step functions which converges
almost everywhere to f . Since the sequence < | f −ψn|p > is uniformly bounded and
tends to zero almost every where by the bounded convergence theorem [Let < f n > be
a sequence of measurable functions defined on a set E os finite measure and suppose
that there is a real number M such that | fn(x)| ≤M for all n and all x. If f (x) = lim fn(x)
for each x in E, then

∫
E f = lim

∫
E f n] implies that ‖ f −ψn‖p→ 0. Since F is bounded

and
|F( f )−F(ψn)|= |F( f −ψn)| ≤ ‖F‖‖ f −ψn‖p

we must have

F( f ) = limF(ψn) (**)

Since gψn is always less than |g| times the uniform bound for the sequence < ψn >, we
have ∫

f g = lim
∫

gψn (***)

by the Lebesgue convergence theorem (Let g be integrable over E and let < f n > be a
sequence of measurable functions such that | fn| ≤ g on E and for almost all x in E we
have f (x) lim fn(x)
Then ∫

E
f = lim

∫
E

fn.

Consequently, we must have∫
f g = F( f ) using (∗),(∗∗),(∗∗∗)

for each bounded measurable function f . Since

|F( f )| ≤ ‖F‖‖ f‖p,

we have g in Lq and ‖g‖p≤‖F‖ by the Lemma which states that “Let g be an integrable
function on [0,1] and suppose that there is a constant M such that |

∫
f g| ≤M‖ f‖p for

all bounded measurable function f . then g is in Lq and ‖g‖q ≤M” thus we have only
to show that F( f ) =

∫
f g for each f in Lp. Let f be an arbitrary function in Lp. Then

there is for each ∈> 0, a step function ψ such that ‖ f −ψ‖p <∈ . Since is bounded,
we have

F(ψ) =
∫

ψg
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Hence

|F( f )−
∫

f g|= |F( f )−F(ψ)+
∫

ψg−
∫

f g|

≤ |F( f −ψ)|+ |
∫
(ψ− f )g|

≤ ‖F‖‖ f −ψ‖p +‖g‖q‖ f −ψ‖p

< [‖F‖+‖g‖q] ∈ .

Since ∈ is an arbitrary number, we must have

F( f ) =
∫

f g

Riesz-Representation theorem for bounded linear functional on C[a,b].

Theorem 4.11. Let F ∈ C∗[a,b]. Then there exists a function g ∈ BV [a,b] [bounded
variation] such that for all F ∈C[a,b].

F( f ) =
∫ b

a
f (t)dg(t)

Such that
‖F‖=V (g)

Where V (g) denotes the total variation of g(t).

Proof. If we view C[a,b], as a subspace of B[a,b], by Hahn-Banach theorem, there
exists a bounded linear functional F0 defined on all of B[a,b], defined extending F and
such that ‖F0‖= ‖F‖. Define the characteristic function

χt(x) =

{
1 for a≤ x < s
0 for s≤ x≤ b

Obviously, for each such t,
χt(x) ∈ B[a,b]

with F0 the extension of F , we now define a function g(t) by

F0(χt(x)) = g(t).
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We partition the interval [a,b] into

a = t0 < t1 < .. . < tn = b

and consider the sum
n

∑
i=1
|g(ti)−g(ti−1)|.

Putting

∈i= sgn[g(ti)−g(ti−1)] =
|g(ti)−g(ti−1)|
[g(ti)−g(ti−1)]

we obtain

n

∑
i=1
|g(ti)−g(ti−1)|=∈i [g(ti)−g(ti−1)]

=
n

∑
i=1
∈i [F0(χti)−F0(χti−1)]

= F0[
n

∑
i=1
∈i (χti−χti−1)]

Therefore
n

∑
i=1
|g(ti)−g(ti−1)| ≤ ‖F0‖‖

n

∑
i=1
∈i (χti−χti−1)‖

because

‖F0‖= ‖F‖ and ‖
n

∑
i=1
∈i (χti−χti−1)‖= 1

Hence

|
n

∑
i=1
|g(ti)−g(ti−1)| ≤ ‖F‖

that is g(t) is of bounded variation.
Also it follows that

V (g)≤ ‖ f‖ (1)

Suppose now that f ∈C[a,b] and define

Zn(t) =
n

∑
i=1

f (ti)[χti(x)−χti−1(x)]
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Where the sequence < Zn(t)> converges strongly to f (t) i.e. ‖Zn− f‖→ 0.
Then the equality

F0(Zn) =
n

∑
i=1

f (ti)[g(ti)−g(ti−1)]

Implies that

lim
n→∞

F(Zn) = lim
n

n

∑
i=1

f (ti)[g(ti)−g(ti−1)]

=
∫ b

a
f (t)dg(t)

by the definition of Riemann-Stieltjes integral. Since the sequence < Zn(t)> converges
strongly to f (t) i.e. ‖Zn− f‖→ 0 and F0 is a bounded (or continuous) linear functional
and therefore cont, this implies that

Fn(Zn)→ F0( f )

Therefore

F0( f ) =
∫ b

a
f (t)dg(t).

Now since f was an arbitrary continuous function on [a,b] and F0 must agree with F
on C[a,b], we can write

F( f ) =
∫ b

a
f (t)dg(t) for any f ∈C[a,b] (2)

From (2), we have

|F( f )|= |
∫ b

a
f (t)dg(t)|

≤ max
t∈[a,b]

| f (t)|.V (g).

= ‖ f‖V (g)

= ‖ f‖V (g) for all f ∈C[a,b]

Taking sup ‖ f‖ ≤ 1, we have

‖ f‖ ≥V (g) (3)

From (1) and (3), it follows that
‖ f‖=V (g).
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CHAPTER 5

Second Conjugate Spaces
We know that the conjugate space N∗ of a normed linear space N is itself a normed

linear space. As R and C are normed linear spaces, we can form the conjugate space
(N∗)∗ of N∗ and denote this by N∗∗ and call it the second conjugate or dual space of N.
The importance of N∗∗ lies in the fact that each vector x in N give rise to a functional Fx

in N∗∗ and that there exists an isometric isomorphism of N into N∗∗ called the natural
imbedding of N into N∗∗. The following definition will be required to establish natural
imbedding of N in N∗∗.

Definition 5.1. Let N and N′ be normed linear spaces. Then a one to one linear
transformation T : N → N′ is called isometric isomorphism of N into N

′
if ‖T x‖ =

‖x‖ for every x ∈ N. Further if there exists an, isometric isomorphism of N onto N′,
then N is said to isometrically isomorphic to N′.

We now show that to each vector x ∈ N, there is a functional Fx in N∗∗.

Hence we prove the following result.

Theorem 5.2. Let N be an arbitrary normed linear space. Then for each vector x ∈ N,

the scalar valued function Fx defined by

Fx( f ) = f (x) ∀ f ∈ N∗

is a continuous linear functional in N∗∗ and the mapping x→ Fx is an isometric isomor-
phism of N into N∗∗.

Proof. Let N be an arbitrary normed linear space. Let x be a vector in N, consider the
scalar valued function Fx defined by

Fx( f ) = f (x) ∀ f ∈ N∗

We assert that Fx is linear. In fact

Fx(α f +βg) = (α f +βg)(x)

= α f (x)+βg(x)

= αFx( f )+βFx(g)
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Now computing the norm of Fx, we have

‖Fx‖= sup{|Fx( f )|;‖ f‖ ≤ 1}
= sup{|F(x)|;‖ f‖ ≤ 1}
≤ sup{‖ f‖ ‖x‖;‖ f‖ ≤ 1}
≤ ‖x‖ (1)

Therefore Fx is bounded and a continuous linear functional on N∗. [Fx is called the
functional on N∗ induced by the vector x and is referred to as induced functional]. Now
define a mapping φ : N→ N∗∗ by

φ(x) = Fx ∀ x ∈ N.

Clearly φ is one to one, since

φ(x) = φ(y)⇒ Fx = Fy

⇒ Fx( f ) = Fy( f ) ∀ f ∈ N∗

⇒ F(x) = f (y)

⇒ f (x− y) = 0⇒ x− y = 0⇒ x = y.

Let x,y ∈ N, then for all scalars α and β ,

φ(αx+βy) = Fαx+βy

If f ∈ N∗ then

Fαx+βy( f ) = f (αx+βy)

= α f (x)+β f (y)

= αFx( f )+β (Fy( f )

= (αFx +βFy)( f )

= αFx +BFy

Thus

Fαx+βy = αFx +βFy

and hence

⇒ φ(αx+βy) = αFx +βFy +αφ(x)+βφ(y)
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which shows that φ is linear
Moreover by (1)

‖φ(x)‖= ‖Fx‖ ≤ ‖x‖ (2)

Also we know that if x is a non-zero vector in N, then there exists a functional f0 in N∗

such that f0(x) = ‖x‖ and ‖ f0‖= 1. So

‖x‖= f0(x)

≤ sup{| f0(x)|; f0 ∈ N∗ and ‖ f0‖= 1}
= sup{|Fx( f0)|;‖ f0‖= 1}

⇒ = ‖φ(x)‖ (3)

‖x‖ ≤ ‖φ(x)‖

Thus from (2) and (3)

‖φ(x)‖= ‖x‖ ∀ x ∈ N.

⇒ φ is an isometry.

It follows therefore that x→ Fx is an isometric isomorphism of N into N∗∗.

Remark. This isometric isomorphism is called the natural imbedding of N into N∗∗,
for we may regard N as a part’ of N∗∗ of without altering any of its structure as a normed
linear space and we write

N ⊂ N∗∗.

Reflexive Spaces

Definition 5.3. A normed linear space N is said to be reflexive if N = N∗∗. The space
lp and lq for 1 < p < ∞ are reflexive since l∗p = lq⇒ l∗∗p = l∗q = lp.

Remark. Every reflexive space is a Banach space since N∗∗ is a complete space. But
a Banach space may be non-reflexive space for C[0,1] is a Banach space but it is not
reflexive.

Example.
(ln

p)
∗ = ln

p

(ln
p)
∗ = ln

∞, (ln
p)
∗ = ln

1
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Where

ln
p = {x = (x1,x2, . . . ,xn)‖x‖= (

n

∑
1
|xi|p)1/p}

ln
p = {x = (xi)

n
i−1;‖x‖=

n

∑
1
|xi|}

ln
∞ = {x = (xi)

n
i−1;‖x‖= max

1<i<n
|xi|}

Solution. Let L be the linear space of n tuples x = (x1,x2, . . . ,xn).

If {e1,e2, . . . ,en} is a natural basis of L. Then

x = x1e1 + x2e2 + . . .+ xnen

If f is any linear functional on L i.e. A scalar valued linear function

f (x) = (x1e1 + . . .+ xnen)

= f (x1e1)+ . . .+(xnen)

= x1 f (e1)+ . . .+ xn f (en)

where xi’s are scalars.
Put f (e1) = y1 . . . , f (en) = yn, then (y1, . . . ,yn) is an n-tuples of scalars. Thus

f (x) =
n

∑
i=1

xiyi ∀ x = (xi)
n
1 ∈ L.

is a linear functional since

f (x+ x′) =
n

∑
i=1

(xi + x′i)yi

=
n

∑
i=1

(xiyi + x′iyi)

=
n

∑
i=1

xiyi +
n

∑
i=1

x′iyi

= f (x)+ f (x′)

Similarly f (αx) = ∑
n
i=1 αxiyi = α ∑

n
i=1 xiyi = α f (x) ∀ α scalar.

Thus we have a 1−1, onto mapping defined by

y = (y1,y2, . . . ,yn)→ F
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where f ∈ L∗,y ∈ L . Thus algebraically L′ = L.
By defining a suitable norm, say the norm

‖x‖= (
n

∑
i=1
|xp

i |)
1/p

on L to make it ln
p space, the L′ space of all continuous functionals is equal to (1n

p)
∗,

where the norm of f is given by

‖ f‖= inf{k;k ≥ 0 and | f (x)| ≤ k‖x‖}⇒ x ∈ ln
p.

It is sufficient to show that what norm of y = (y1,y2, . . . ,yn) makes the mapping y⇔ f
an isometric isomorphism.
Case I: when 1 < p < ∞

Then we can show that (ln
p)
∗ = ln

q

‖x‖= (
n

∑
1
|xp

i |)
1/p ∀ x ∈ ln

p.

If f is continuous linear functional

| f (x)|= |
n

∑
i=1

xiyi|

≤
n

∑
1
|xiyi|

≤ (
n

∑
i=1
|xi|p)1/p(

n

∑
i=1
|yi|q)1/q

[By using Holder’s inequality]

| f (x)| ≤ (
n

∑
i=1
|yi|q)1/q‖x‖

Thus we have

‖ f‖ ≤ (
n

∑
i=1
|yi|q)1/q

since
| f (x)| ≤ ‖ f‖‖x|

and

‖ f‖= inf(
n

∑
i=1
|yi|q)1/q
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For the other inequality consider the vector x defined by

xi = 0 if yi = 0

and xi =
|yi|q
yi

otherwise.

f (x) =
n

∑
i=1

xiyi =
n

∑
i=1
|yi|q

| f (x)|
‖x‖

=
∑

n
i=1 |yi|q

(∑n
i=1 |xi|p)1/p

=
∑

n
i=1 |yi|q

(∑n
i=1 |yi|p(q−1))1/p

since |yi|q−1 = |xi|

=
∑

n
i=1 |yi|q

(∑n
i=1 |yi|q)1/p

= (
n

∑
i=1
|yi|q)1− 1

p = (
n

∑
i=1
|yi|q)1/q

⇒ | f (x)|= (
n

∑
i=1
|yi|q)1/q‖x‖ ≤ ‖ f‖‖x‖

So for particular choice of x, we have

⇒ | f (x)|= (
n

∑
i=1
|yi|q)1/q‖x‖ ≤ ‖ f‖‖x‖

⇒ (
n

∑
i=1
|yi|q)1/q ≤ ‖ f‖

Thus necessarily, we have

‖ f = ‖(
n

∑
i=1
|yi|q)1/q⇒ f ∈ ln

q

So x ∈ ln
q ⇒ f ∈ ln

q .

Case 2: When p = 1, (ln
q)
∗ = ln

∞.

Here we have

‖x‖=
n

∑
i=1
|xi| where x ∈ ln

1 .

It follows that

| f (x)|= |
n

∑
i=1

xiyi| ≤
n

∑
i=1
|xiyi|
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=
n

∑
i=1
|xi||yi|

≤ max
1<i<n

|yi|
n

∑
i=1
|xi| ∀ x = (x1, . . .xn) ∈ ln

1 .

Since we know

| f (x)| ≤ ‖ f‖‖x‖

we see that ‖ f‖ ≤ max
1<i<n

|yi|.
Now max

1<i<n
|yi|= |yk| say for some, k,1≤ k ≤ n.

Choose an x = (x1, . . . ,xn) such that

xi = 0 if i 6= k

=
|yk|
yk

,otherwise

Note that f 6= 0, then ∃yi 6= 0 such that yk 6= 0.
Thus | f (x)|= |∑n

1 xiyi|= |yk|.yk
yk

= |yk| by definition of x.

‖ f‖= sup
‖x‖=1

| f (x)| ≥ |yk|

since (0,0, . . . , |yk|
yk
, . . .) has norm 1

⇒ ‖ f‖ ≤ max
1<i<n

|yi|

So we have (ln
1)
∗ = ln

∞.

Case 3: (ln
1)
∗ = ln

∞.

where ‖x‖= max
1<i<n

|xi|
we have f (x) = ∑

n
i=1 xiyi

| f (x)|= |
n

∑
i=1

xiyi| ≤
n

∑
i=1
|xi||yi|

= max
1<i<n

|xi|
n

∑
i=1
|yi|
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Since | f (x)| ≤ ‖ f‖‖x‖

⇒ ‖ f‖ ≤
n

∑
i=1
|yi|

consider the vector x defined by

xi = 0 if yi = 0.

xi =
|yi|
yi

otherwise.

we have

| f (x)|=
n

∑
i=1

|yi|× yi

yi
=

n

∑
i=1
|yi|

⇒ | f (x)|
‖x‖

=
∑

n
i=1 |yi|

max
1<i<n

{|xi|}
=

∑
n
i=1 |yi|

max
1<i<n

{| |yi|
yi
|}

=
∑

n
i=1 |yi|

max
1<i<n

|yi|
yi

n

∑
i=1
|yi|

⇒ | f (x)|=
n

∑
i=1
|yi|‖x‖ ≤ ‖ f‖‖x‖

⇒
n

∑
i=1
|yi| ≤ ‖ f‖

Thus

‖ f‖=
n

∑
i=1
|yi| where f ∈ ln

1

Thus (ln
1)
∗ = ln

∞.

Remark. A normed linear space may be complete without being reflexive as we will
see

(C0)
∗ = l1

Where C0 {space of all convergent sequences converges to zero } and

(C0)
∗ = l∗1 = l∞

Thus C0 is not a reflexive. But C0 is complete space.
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Theorem 5.4. C[0,1] is not regular [reflexive]

Proof. Here C[0,1] denotes the set of all real continuous functions x=x(t) on [0,1] and

‖x‖= (
∫ 1

0
|x(t)|2dt)1/2

Note that C[0,1] is not a Banach space under this norm.
Assume that C[0,1] is regular. An arbitrary linear functional F( f ) defined on the

space V of all functions of bounded variation. Then must have the form Fx ( f ) = f (x)
for suitably chosen x ∈C[0,1]. Recalling the general form of functional C[0,1], we can
write for an arbitrary F( f ),

Fx( f ) = F(x) =
∫ 1

0
x(t)d f (t) (1)

where F(t) denotes the function of bounded variation associated with the functional
f (x) ∈C[0,1]. The functional

Fx0( f ) = f (t0 +0)− f (t0−0) (*)

assigns to every function f (t) of bounded variation, it jump at the point t0.
Obviously, Fx0( f ) is additive and

|Fx0( f )|= | f (t0 +0)− f (t0−0)|

≤
1

var( f )
0

= ‖ f‖

implies the boundedness of Fx0( f ) and the fact that norm of Fx0( f ) can not be greater
than 1. Also Fx0( f ) 6= 0 that is to say it is sufficient to consider Fx0( f1) with

f1(t) =

{
0 for 0≤ t < t0
t for t0 ≤ t < 1

.

Because of (1), a continuous function x0(t) can be found such that

Fx0( f ) =
∫ 1

0
x0(t)d f (t) (2)

By (*) we have

Fx0( f0) = 0
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for F0(t) =
∫ 1

0 x0(t)d f
because f0(t) is continuous on [0,1]. But on the other hand

Fx0( f0) =
∫ 1

0
x0(t)d f0(t) =

∫ 1

0
x0(t)dt > 0

because x0(t) 6= 0.. This is a contradiction. Therefore C[0,1] can not be regular (reflex-
ive)

Banach-Steinhaus or Uniform Boundedness Principle

The following theorem i.e. Uniform Boundedness Principle enables us to determine
whether the norms of a given collection of bounded linear transformations {Ti} have
a finite least upper bound or equivalently if there is some uniform bound for the set
(‖Ti‖). So we prove the following results:

Theorem 5.5. Let B be a Banach space and N a normed linear space. If {Ti} is a
non empty set of continuous linear transformations of B into N with the property that
{Ti(x)} is a bounded subset of N for each vector in B, then (‖Ti‖) is a bounded set of
numbers that is {Ti} is bounded as a subset of β (B,N).

Proof. For each positive integer n, let

Fn = {x;x ∈ Band ‖Ti(x)‖ ≤ n for all i}

we claim that Fn is a closed subset of B. To show this let y be a limit point of Fn. Then
there exists x ∈ Fn such that x 6= y and ‖x− y‖ < δ . But since Ti are continuous, we
have

‖Ti(x)−Ti(y)‖<∈ whenever ‖x− y‖< δ .

Now Ti(y) = Ti(y− x+ x)
and so

‖Ti(y)‖= ‖Ti(y− x)+Ti(y)‖
≤ ‖Ti(y− x)‖+‖Ti(x)‖
= ‖Ti(y)−Ti(x)‖+‖Ti(x)‖
<∈+n whenever ‖x− y‖< δ

≤ n.
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Hence y ∈ Fn. Thus Fn is closed. Also by our assumption

B =
∞⋃

n−1

Fn

Since B is complete, using Baire’s Theorem, we see that one of the Fn, say Fni has non-
empty interior and thus contains a closed sphere S0 with centre x0 and radius r0 > 0.
Therefore each vector in every set Ti(S0) has norm less than or equal to n0, that is
‖Ti(S0)‖< n0.

Clearly S0−x0 is the closed sphere with radius r0 centred on the origin and so S0−x0
r0

is the closed unit sphere S. Since x0 is in S0, we have

‖Ti(S0 + x0)‖= ‖Ti(S0)+Ti(x0)‖
≤ ‖Ti(S0)‖+‖Ti(x0)‖
≤ n0 +n0 = 2n0.

This yields

‖Ti(S)‖= ‖Ti
S0− x0

r0
‖ ≤ 2n0

r0

and therefore

‖Ti‖= sup{‖Ti(S)‖;‖S‖ ≤ 1}

≤ sup{2n0

r0
}

=
2n0

r0
for every i.

which completes the proof of the theorem.

Consequences of Uniform Boundedness Principle
We prove some consequence of Banach-Steinhaus Theorem (Uniform Boundedness
Principle) having several applications in analysis.

Theorem 5.6. A non empty subset X of a normed linear space N is bounded if and only
if f (X), is a bounded set of numbers for each f in N∗.

Proof. Since | f (x)| ≤ ‖ f‖.‖x‖, it follows that if X is bounded, then f (X) is also
bounded for each f .
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To prove the converse, we write X = {xi}. We now use natural imbedding to map
X to the subset {Fxi} of N∗∗. The assumption that f (X) = { f (xi)} is bounded for
each f implies that for { f (xi)} is bounded for each f . Moreover since N∗ is complete,
uniform boundedness theorem shows that {Fxi( f )} is a bounded subset of. Since natural
imbedding preserves norms, therefore X is evidently a bounded subset of N. This
completes the proof of the theorem.

Theorem 3. Let X be a Banach space and Y a normed linear space. Let {Tn} be a
sequence of terms from β (X ,Y ) conversing strongly to T . Then there exists a positive
constant M such that ‖Tn‖< M for all n.

Proof. Since Tn
S−→ T , then

lim
n→∞

Tnx = T x for all x.

This implies that
sup

n
‖Tn(x)‖< ∞ for all x.

Now using uniform boundedness principle, we must have

sup
n
‖Tn‖< ∞.

and therefore the theorem is proved.

Definition 5.7. Let {Tn} be a sequence of linear transformation from β (X ,Y ).

Then {Tn} is said to be a strong Cauchy sequence if the sequence {Tn(x)} is a
Cauchy sequence for all x ∈ X .

Further a space β (X ,Y ) is said to be complete in the strong sense if every strong
Cauchy sequence in β (X ,Y ) converges strongly to some member of the space.

We now prove the following:

Theorem 5.8. If the spaces X and Y are Banach spaces, then β (X ,Y ) is complete in
the strong sense.

Proof. Let < Tn > be a strong Cauchy sequence in β (X ,Y ). We must show that there
is some element T of β (X ,Y ) to which < Tn > converges strongly.

Since < Tn > is a strong Cauchy sequence, it follows by definition that for any
x ∈ X ,< Tnx > is a Cauchy sequence of elements of Y . Since Y is a Banach space, the
limit of this sequence must exist in Y . Thus for any x ∈ X , the function

T x = lim
n

Tnx (1)
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Is defined. Clearly, T is linear transformation and (1) is equivalent to saying that

Tn→ T.

It remains to show that T is a bounded linear transformation. Since X is a Banach space
and < Tn > converges strongly to T , theorem 3 implies that ‖Tn‖ < M, for all n and
some positive constant M.

Since for any x ∈ X , we can say

‖Tnx‖ ≤ ‖Tn‖.‖x‖

this implies that
‖Tn(x)‖ ≤M.‖x‖

for any x and every n. Since it is true for every n, it must also be true in the limit. Thus

lim
n
‖Tn(x)‖ ≤M.‖x‖.

Since norm is continuous, we have

‖ lim
n

Tnx‖ ≤M.‖x‖

or
‖T x‖ ≤M.‖x‖

for every x. Hence T is bounded. Thus we have shown that every strong Cauchy
sequence in β (X ,Y ) converges strongly to some element T of β (X ,Y ). Hence β (X ,Y )
is complete in the strong sense and the proof is complete.

We now define what is meant by a week Cauchy sequence of elements of the normed
linear space X .

Definition 5.9. The sequence of element {Tn} of the normed linear space x is said to be
a weak Cauchy sequence if < f (xn)> is a Cauchy sequence of elements for all f ∈ X∗,
the conjugate space of X .

Theorem 5.10. In a normed linear space X , every Cauchy sequence is bounded.

Proof. Let < xn > be a weak Cauchy sequence of elements of a normed linear space X .
This means that < f (xn) > is a Cauchy sequence for all f ∈ X . We recall the natural
imbedding

φ : X → X∗∗
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x→ Fx

where Fx( f ) = f (x) for all x ∈ X and f ∈ X∗.φ is a bounded linear functional satisfying

‖φ(x)‖= ‖x‖ for all x ∈ X .

Since < f (xn)> is a Cauchy sequence of complex numbers, for any f ∈ X∗, we have

sup
n
|Fxn( f )|= sup

n
|Fxn( f )|< ∞ (1)

But X∗ is a Banach space. Therefore by Uniform Bounded Principle (1) yields

sup
n
|Fxn( f )|< ∞

Since
‖Fxn‖= ‖φ(xn)‖= ‖xn‖

therefore supn ‖xn‖< ∞.
Hence the weak Cauchy sequence {xn} is bounded. This completes the proof.

Theorem 5.11. In a normed linear space X , if the sequence < xn > converges weakly
to x, that is xn→ x, then there exists some positive constant m such that ‖xn‖ < m for
all n.

Proof. We note that if
xn

W−→ x.

then certainly < xn > is a weak Cauchy sequence, Hence by Theorem 5, {xn} is
bounded, that is ‖xn‖ ≤ m for constant m and the proof is complete.

After having introduced the definition of weak Cauchy sequence, we give the fol-
lowing definition of weak completeness of a space.

Definition 5.12. A normed linear space X is said to be weakly complete if every Cauchy
sequence of elements of X converges weak to some other member of X .

Our next theorem shows that any reflexive space is weakly complete.

Theorem 5.13. If the normed linear space X is reflexive, then it is also weakly com-
plete.
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Proof. Suppose < xn > is a weak Cauchy sequence of elements of X . this means that
< f (xn)> is a Cauchy sequence for all f ∈ X∗. Now we consider natural imbedding

φ :X → X∗∗

x→ Fx

This mapping implies that < Fxi( f )> is a cauchy sequence of scalars for all f ∈ X∗.
Since the underlying field is either real or complex (each of which is complete

metric space). This implies that the functional y defined on X∗∗ by

y( f ) = lim
n

Fxn( f )

exist for every f ∈ X∗. It can be verified that y is linear. We shall now show that y is
a bounded linear functional. Since ‖Fxn‖ = ‖Fx‖ and < xn > is a Cauchy sequence, it
follows by Theorem 5, that there is some positive number M such that

‖xn‖ ≤M.

for all n, this implies that

|Fxn( f )|= | f (xn)| ≤ ‖ f‖.‖xn‖
≤M.‖ f‖

for any f ∈ X∗ and all n. Hence it is true in the limit that is

lim |Fxn( f )| ≤M‖ f‖
⇒ | limFxn( f )| ≤M‖ f‖
or |y( f )| ≤M‖ f‖ using (1)

for all f ∈ X∗ and all n.
This however implies that y is a bounded linear functional or that y ∈ X∗∗.
Since X is reflexive there must be some x ∈ X that we can identify with y that is,

there must be some x ∈ X such that y = Fx.
Hence for any f ∈ X , we can say

lim
n

f (xn) = lim
n

Fxn( f )

= y( f )

= Fx( f )
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= f (x)

Since this holds for any f ∈ X∗, we have

xn
w−→ x.

Thus we have shown that each weak Cauchy sequence of elements of X converges
weakly to some other member of X . Hence X is weakly complete and the proof of the
theorem is complete.
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CHAPTER 6

Open Mapping and Closed Graph Thorems
First we present some definitions which will be required in the sequel. The validity of
many important therorems of analysis depends on the completeness of the systems with
which they deal. Baire’s theorem about complete metric spaces is the basic tool in this
area. In order to emphasize the role played by the concept of category, some theorems
of this chapter are stated in a little more generally than is usually needed.

Definition 6.1. If T : V →W is a linear transformation, then the set N of all vectors
x ∈V such that T x = 0 is called the null space (or kernel) of T . Thus

N = {x ∈V ;T x = 0}

Also T x1 = T x2 ⇔ T (x1− x2) = 0⇔ x1 = x2 ∈ N and that if x ∈ N, then T x = 0 so
that if T is injective (one to one). Thus we have shown that T is injective if and only if
N = {0}.

Now suppose that X and Y are normed linear spaces and T : X → Y is a continuous
linear mapping. Let x0 ∈ N (null space of T ) and let xn → x. Since T is continuous
T xn→ T x thus T x = limn→∞ T xn = 0. Hence x ∈ N. This proves that if T : X → Y is
continuous, then null space of T is closed.

Definition 6.2. Let X and Y be normed linear spaces. Then a linear mapping T : X→Y
will be called open mapping if it maps open sets into open set.

Definition 6.3. The mapping T : X → Y where X and Y are normed spaces as will be
called a homeomorphism if it is bijective, continuous and open or equivalently T : X→
Y is a homeomorphism if it is bijective and bi-continuous.

Definition 6.4. Let E be a normed linear space. A subset A of E is called nowhere
dense in E if A has an empty interior. Q is everywhere dense in R while integers are
nowhere dense in R. Thus a nowhere dense set is thought of a set which does not cover
much of the space.

Baire Category Theorem.
It states that a complete space can not be covered by any sequence of no-where dense
sets.
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Open mapping Theorem or Interior Mapping Principle

Theorem 6.5. Let B and B be Banach spaces. If T is a continuous linear transformation
of B onto B, then T is an open mapping. (Thus if the mapping T is also one to one, then
T−1 is continuous).

Proof: First of all, we prove a Lemma

Lemma. Let B and B′ be Banach spaces. If T is a continuous linear transformation of
B onto B′, then the image of each open sphere centred on the origin in B contains an
open sphere centred on the origin, in B′.

Proof. Let Sr and S′r be open spheres with radius r centred on the origin in B and B′

respectively. Then
T (Sr) = T (rS1) = rT (S1)

So, it is sufficient to show that T (S1) contains some S′r.
We first prove that T (S1) contains some S′r. Since T is onto, we note that

B′ =
∞⋃

n=1

T (Sn).

Being a Banach space, B′ is complete and so by Baire’s theorem, some T (Sn0) has an
interior point y0 lying in T (Sn0). Since the mapping y→ y−y0 is a homeomorphism of
B′ onto itself. T (Sn0)− y0 has the origin as an interior point. Since y0 is in T (Sn0) we
have

T (Sn0)− y0 ⊆ T (S2n0)

which in turn implies that

T (Sn0)− y0 = T (Sn0)− y0 ⊆ T (S2n0)

which shows that the origin is an interior point of T (S2n0). As we know that multipli-
cation by any non-zero scalar is a homeomorphism of E ′ onto itself. So

T (S2n0) = 2n0T (S1) = 2n0T (S1)

and hence the origin is also an interior point of T (S1). Thus S′∈ ⊆ T (S1) for some posi-
tive number ∈. We complete the proof by showing that S′∈ ⊆ T (S1) which is equivalent
to S′∈/.2 ⊆ T (S1).
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Let y ∈ B′ be such that ‖y‖ <∈. Since y is in T (S1), there exists a vector x1 in B
such that ‖x1‖ < 1 and ‖y− y1‖ < ∈

2 , where y1 = T (x1). Further S′∈/.2 ⊂ T (S1/.2) and

‖y− y1‖< ∈
2 , there exists a vector x2 in B such that ‖x1‖< 1

2 and ‖(y− y1)− y2‖< ∈
4

where y2 = T (x2), continuing in this way, we get a sequence < xn > in B such that
‖xn‖< 1

2n−1 and

‖y− (y1 + y2 + . . .+ yn)‖<
∈
2n

where yn = T (xn). Let Sn = x1 + x2 + . . .+ xn, then

‖Sn‖= ‖x1 + x2 + . . .+ xn‖
≤ ‖x1‖+‖x2‖+ . . .+‖xn‖

< 1+
1
2
+ . . .+

1
2n−1 < 2

Also for n > m, we have

‖Sn−Sm‖= ‖xm+1 + xm+2 + . . .+ xn‖
≤ ‖xm+1‖+‖xm+2‖+ . . .+‖xn‖

<
1

2m + . . .+
1

2m−1 + . . .+
1

2n−1

=
1

2m (1− 1
2n−m )

1− 1
2

=
1

2m−1 [1−
1

2n−m ]→ 0 as m,n→ ∞.

Hence {Sn} is a Cauchy sequence in B and since B is complete, there exists a vector x
in B such hat lim

n→∞
Sn = x and so

‖x‖= ‖ lim Sn‖= lim‖Sn‖ ≤ 2≤ 3

which implies that x ∈ S3. Now

y1 + y2 + . . .+ yn = T (x1)+T (x2)+ . . .+T (xn)

since T is continuous, x = limSn

⇒ T x = lim
n
(T Sn)

= lim(y1 + y2 + . . .+ yn)

⇒ T x = y
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Thus y = T x where ‖x‖< 3 so that y ∈ T (S3).
Hence we have proved that

y ∈ S′∈⇒ y ∈ T (S3) and so S′∈ ⊆ T (S3)

Proof of Main Theorem: It is sufficient to show that if G, is an open set in B, then
T (G) is also open in B′. To show it let v∈ T (G) we shall show that y is an interior point
of T (G) i.e. there exists an open sphere centered on y and contained in T (G). Let x be
a point in G such that y = T x. Since G is open, x is an interior point of G.

Therefore x is the centre of an open sphere written in the form x = Sr, contained
in G. Hence by the above Lemma, T (Sr) contains some sphere S′r1

. Then y+S′r1
is an

open sphere centred on y.
Moreover

y+S′r1
⊆ y+T (Sr)

= T (x)+T (Sr)

= T (x+Sr)

⊆ T (G)

Hence y+ S′r1
is an open sphere centred on y and contained in T (G). Consequently

T (G) is open. Hence the result.

Corollary: A one to one continuous linear transformations of one Banach space onto
another is a homeomorphism.

Proof: The given hypothesis yields that the linear transformation is bijective and con-
tinuous. Further by open mapping theorem, the linear transformation is also open.
Hence it is homeomorphism.

Projections on Banach spaces

Definition 6.6. Let L be a vector space. We say that L is the direct sum of its subspace
say M and N ; if every element z ∈ L has a unique representation z = x+y with X in M
and y in N. In such a case we write L = M⊕N.

Define a mapping P : L→ L by P(z) = x. Then P is a linear transformation, then

(i) P(z) = z if and only if z ∈M

(ii) P(z) = 0 if and only if z ∈M
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(iii) P is idempotent that is P2 = P. Infact

P2(z) = P(P(z)) = P(x) = x = P(z).

Such a linear mapping P is called a projection on the linear space L.
Thus if L is the direct sum of its subspaces M and N, then there exists a linear

transformation P which is idempotent.
But, however in case of Banach spaces, more is required of a projection than more

linearity and idempotence we have

Definition 6.7. A projection on a Banach space is a projection on B in the algebraic
sense (linear and idempotent) which is also continuous.

It follows from the above discussion that if B is the direct sum of its subspaces M
and N, then there exists a linear transformation P which is idempotent. Further we have

Theorem 6.8. If P is a projection on a Banach space B and if M and N are its range
and null space, then M and N are closed linear subspaces of B such that B = M⊕N.

Proof. We are given that P is a projection on a Banach space B and M and N are range
and null spaces of. Thus M is linear, continuous and idempotent and

M = range of P = {P(z);z ∈ B}
N = null space of P = {z;P(z) = 0}

Let z ∈ B. Consider

z = P(z)+(I−P)z (1)

where I denotes the identity transformation on B such that I(z) = z for all z ∈ B.
Clearly p(z) is in M and since P is idempotent, we have

P{(I−P)(z)}= P{(I−P)}(z)
= (P−P2)(z)

= (P−P2)(z) = 0(z) = 0

It follows therefore that (I−P)(z) ∈ N, the null space of P. Therefore equation (1)
gives a de composition of z according to the subspaces M and N. This decomposition
is unique because if we have another representation as z = x+ y, x ∈M, y ∈ N then

P(z) = P(x) = x
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and

(I−P)(z) = I(z)−P(z)

= z− x

= y

Thus B = M⊕N. We know that the null space of a continuous linear transformation is
closed. Therefore continuity of P implies that N is closed.

Further, since M = {P(z);z ∈ B}= {x;P(x) = x}

⇒ M = {x;(I−P)(x) = 0}

It follows that M is the null space of continuous linear transformation I−P and hence
closed. Thus M and N are closed and B = M⊕N. Hence the result.

As an application of open mapping theorem, we have

Theorem 6.9. Let B be a Banach space and let M and N be closed linear subspaces of
B such that B = M⊕N. If z = x+ y is the unique representation of a vector in B as the
sum of vectors in M and N, then the mapping P defined by P(z) = x is a projection on
B whose range and null space are M and N.

Proof. Let P : B→ B be defined by P(z) = x for z = x+ y, x ∈M, y ∈ N. Then since
P(z) = x for z ∈ B, we have M to be the range of P. Also P(y) = 0 for y ∈ N. Therefore
N is the null space of P.

Further
P2(z) = P(P(z)) = P(x) = x = P(z)

Implies that P is idempotent. Hence to prove that P is a projection on B, it only remains
to show that P is continuous. Let

z = x+ y,x ∈M,y ∈ N

be unique representation of the elements of the Banach space B. Define a new norm on
B by

‖z‖′ = ‖x‖+‖y‖

and let B′ denote the linear space B equipped with this new norm, then B′ is a Banach
space and since

P(z)‖= ‖x‖ ≤ ‖x‖+‖y‖= ‖z‖′
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It follows that P in continuous as a mapping of B′ into B,. It is therefore sufficient to
show that B and B′ are homeomorphic. Let T denote the identity mapping of B′ onto B.
Then

‖T (z)‖= ‖z‖= ‖x+ y‖ ≤ ‖x‖+‖y‖= ‖z‖′.

Shows that T is one to one continuous linear transformation of B′ onto B.
Open mapping theorem now implies that T is a homeomorphism. Thus B and B′

are homeomorphic. Hence P : B→ B is continuous and therefore a projection on B.

Closed Linear Transformations and Closed Graph Theorem

Let X and Y be normed linear spaces. Then the Cartesian product X ×Y of X and Y
becomes a normed linear space under the norm defined by

‖(x,y)‖= ‖x‖+‖y‖

Further if X and Y are Banach spaces, then X×Y is also a Banach space w.r.t. the norm
defined above.

Definition 6.10. Let T : B×B′ be a linear transformation of a Banach space into another
Banach space B′. Then the collection of ordered pairs.

GT = {(x,T x);(x,T x) ∈ B×B′}

is called the graph of T . It can be shown that GT is a linear subspace of B×B′.

Definition 6.11. Let X and Y be normed linear spaces and let D be a subspace of X .
Then the linear transformation T : D→ Y is called closed if {xn} ∈ D, lim

n
xn = x and

lim
n

T xn = y ∈ Y imply x ∈ D and y = T x.

As justification for the name given closed transformation in the above definition, we
now show that a linear transformation T is closed iff its graph GT is a closed subspace
of X×Y .

Theorem 6.12. A linear transformation is closed iff its graph is a closed subspace.

Proof. Let X and Y be normed linear spaces and let D be a subspace of X .
Suppose first that T : D→ Y is a closed linear transformation. To show that GT is
closed, we must show that any limit point of GT is actually a member of GT . Therefore
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there must be a sequence of points of GT ,(xn,T xn),xn ∈ D converging to (x,y), this is
equivalent to

‖(xn,T xn)‖−‖x,y‖→ 0

or
‖(xn− x,T xn− y)‖→ 0

or
‖xn− x‖+‖T xn− y‖→ 0⇒ xn→ x and T xn→ y

Since T is closed, this implies that x ∈ D and y = T x.
Therefore we can write that

(x,y) = (x,T x) ∈ GT

⇒ Every limit pt (x,y) of GT is a member of GT .
⇒ GT is closed.
Conversely suppose that GT is closed, and let xn→ x,xn ∈ D, for all n as T xn→ y.
We must show that x ∈ D and y = T x. The condition implies that

(xn,T xn)→ (x,y) ∈ GT

Since GT is closed we have
GT = GT

and thus we have
(x,y) ∈ GT

But by the definition of GT , this means that x ∈ D and y = T x. Hence T is a closed
linear transformation. This completes the proof of the theorem. The next things we
wish to investigate is when a bounded (continuous) transformation is closed. Infact, we
prove.

Theorem 6.13. Let X and Y be normed linear spaces and let D be a closed subspace of
X . If T : D→ Y is bounded, then T is closed.

Proof. D is a closed subspace of X and T : D→ Y is bounded. If < xn > is a conver-
gent sequence of points of D such that T xn→ y, then D being closed, the limit of the
sequence < xn > must belong to D. On the other hand, the continuity (boundedness)
of T implies that T xn→ T x. Hence y = T x. (since T xn→ y ). Thus T becomes closed.
Hence the result.
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An immediate consequence of the theorem is of the following :

Corollary. Suppose T is linear transformation from a normed linear space X into an-
other normed linear space Y . If T is continuous, then T is closed. Also then using
Theorem A,GT is closed.

Proof. We know that the entire space X is always closed, therefore Theorem B applies
and the result follows.

Theorem 6.14. Let X and Y be normed linear spaces and let D be a subspace of X . If
T : D→ Y is a closed linear transformation, then T−1 (if exists) is also a closed linear
transformation.

Proof. Since T is closed, its graph.

GT = {(x,T x);x ∈ D}

is closed, let T (D) denote the range of T . Since T−1 exists, for any y ∈ T (D), there is
a unique x ∈ D such that y = T x or T−1(y). Therefore graph of T can be written as

GT = {(T−1y;y);y ∈ T (D)}

Consider now the mapping
X×Y → Y ×X

(x,y)→ (y,x)

This mapping is isometry, since Isometrics map closed sets into closed sets and the set
{(T−1y,y),y ∈ T (D)} is closed. It follows that the set {(y,T−1y),y ∈ T (D)} is also
closed. But this last set is just the graph of T−1. Thus we have proved that that graph
of T−1 is closed or hence T−1 is closed by Theorem A.

Theorem 6.15. Let D be a subspace of a normed linear space X and let T : D→ Y be
a linear transformation from D into a Banach space Y . If T is closed and bounded, then
D is a closed subspace of X .

Proof. It is sufficient to show that any limit point of D is also a member of D.
Hence suppose that x is a limit point of D. This means that there must be some

sequence {xn} of points of D such that xn→ x. Consider now

‖T xn−T xm‖ ≤ ‖T‖ ‖xn− xm‖



Functional Analysis:- Author: Dr. Vizender Singh Vetter: Dr. Ramesh Kumar Vats 91

Since
‖xn− xm‖→ 0 as n,m→ ∞

as every convergent sequence is Cauchy.
It follows that < T xn > is a Cauchy sequence in Y . But Y being a Banach space is

complete. Therefore there exists x ∈ Y such that

T xn→ y.

Thus we have xn→ x and T xn→ Y.. Now since T is closed. This implies that x ∈ D.
Hence D contains all its limit points and hence closed. This completes the proof of the
theorem.

We now state and prove Closed Graph Theorem.

Closed Graph Theorem

Theorem 6.16. Let B and B′ be Banach spaces and let T : B B be a linear transforma-
tion. Then graph of T is closed if and only if T is continuous.

Proof. Suppose first that T is continuous. Then Corollary to Theorem B implies that
GT is closed.

Conversely suppose that GT is closed. Since B and B′ are Banach spaces. It follows
that B×B′ is a Banach space. Since closed subsets of a complete metric space must
be complete, it follows that GT (being closed) is Banach space too. Now consider the
mapping

f : GT → B

defined by
f (x,T x) = x

Clearly f is a linear transformation. We claim further that f is bounded. To prove
this, we note that

‖ f (x,T x)‖= ‖x‖ ≤ ‖x‖+‖T x‖
= ‖(x,T x)‖

which implies that f is a bounded linear transformation. Further f (GT ) = B and there-
fore f is onto. We shall show that f is one to one. Also we know that a linear transfor-
mation is one-to-one if its kernel (null space) consists of identity element only. There-
fore. We need to prove that (0,0) is the only element f maps into zero. Hence, suppose

f (x,T x) = x = 0



92

But x = 0 implies that T x = 0 and so

(x,T x) = (0,0)

and hence f is one to one. Thus f : GT → B is bijective and therefore f−1 exists.
Now GT and B and Banach spaces and f is a continuous linear transformation and

f−1 is continuous. To complete the proof we must show that if xn→ x, then T xn→ T x.
[ T is continuous]. Hence suppose that xn→ x.

Since f−1 is continuous, we have

f−1xn→ f−1x,

⇒ (xn,T xn)→ (x,T x)

⇒ (xn− x,T xn−T x)→ (0,0)

⇒ T xn→ T x

Thus T is continuous. Hence the result.

Equivalent Norms

Suppose X is a vector space over the scalar field F and suppose that ‖.‖1 and ‖.‖2 are
each norms on X , Then ‖.‖1 is said to be equivalent to ‖.‖2 written as ‖.‖1 ∼ ‖.‖2,, if ∃
positive numbers a and b such that

a‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1 for all x ∈ X .

This relation is an equivalence relation on the set of all norms over a given space.
Further, if two norms are equivalent, then certainly if < xn > is a Cauchy sequence
with respect to ‖.‖1 it must also be a cauchy sequence with respect to ‖.‖2 and vice-
versa.

Let a basis for he finite dimensional space be [x1,x2, . . . ,xn]. For any x ∈ X , there
exist unique scalars α1,α2, . . . ,αn such that x = ∑

n
i=1 αixi.. Now ‖x‖0 = max

i
|αi| is

indeed a norm. This norm is called Zeroth Norm. We

Theorem 6.17. On a finite dimensional space, all norms are equivalent.

Proof. We shall show that all norms are equivalent by showing that any norm is equiv-
alent to the particular norm defined above and called the Zeroth norm.
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Let a basis for the finite dimensional space X is given by x1,x2, . . . ,xn. For any
x ∈ X1 there exist unique scalars α1,α2, . . . ,αn such that

x =
n

∑
i=1

αixi. (*)

Now ‖x‖0 = max
i
|αi| is indeed a norm.

Now let ‖‖ be any norm on X . We want to find real numbers a,b > 0 such that (1)
is satisfied, where ‖ ‖2 is replaced b ‖.‖ and ‖.‖1 is replaced by ‖ ‖0..

The right hand side of (1) easily satisfies

a‖x‖1 ≤ ‖x‖2 ≤ b‖x‖1 (1)

since from (*)

‖x‖= ‖
n

∑
i=1

αixi‖ ≤
n

∑
i=1
|αi| ‖αi‖

≤max
i
|αi|

n

∑
i=1
‖xi‖

≤ ‖x‖0

n

∑
i=1
‖xi‖

because, since the basis is fixed, we can take as the number b

b =
n

∑
i=1
‖xi‖

to get for any x ∈ X ,
‖x‖ ≤ b‖x‖0

The left side of (1) does not follow quite as simply. Consider the simple case of a one-
dimensional space with basis x1. Any vector in the space X can be written uniquely
as

x = α1x1

for some α1 ∈ F . Hence
‖x‖= |α|‖x1‖

Thus in this case, the number a on the left side of (1) can be taken to be just ‖x1‖.
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Having verified this, we shall now proceed by induction, suppose the theorem is
true for all spaces of dimension less than or equal to n− 1. We can now say that, if
dimX = n, with basis {x1,x2, . . . ,xn} and

M =< x1,x2, . . . ,xn−1 >

be the subspace spanned by the first n−1 basis vectors, then

‖ ‖ ∼ ‖ ‖0

in M. Since this is so, if {yn} is a cauchy sequence of elements from M w.r.t. to ‖ ‖,
then {yn} is also a cauchy sequence with respect to ‖ ‖0.. Consider the ith term of this
sequence now :

yi = α
(i)
1 +α

(i)
2 x2 + . . .+α

(i)
n−1xn−1

By the above

‖yn− ym‖0→ asn,m→ ∞ (2)

Since {yn} is a cauchy sequence.
But ‖yn− ym‖0 = max

j
|α(n)

j −α
(m)
j | which by (2) implies

|α(n)
j −α

(m)
j | → 0, asn,m→ ∞ (3)

for j = 1,2, . . .n−1. Since F = R or C, and each is complete and (3) states that if the
{α(m)

j } is a cauchy sequence, there must exist α1,α2, . . . ,αn ∈ F such that

α
(m)
j → α j( j = 1,2, . . . , n−1)

In view of this, it is clear that

ym→ y =
n

∑
j=1

αixi

with respect to the zeroth norm. Further

ym
‖‖0−→ y⇒ ym

‖•‖−→ y

Thus under the induction hypothesis, are have shown that subspace M is complete with
respect to an arbitrary norm which immediately implies that it is closed.
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Furthermore, from the above, we see that this statement will be true for any finite
dimensional subspace of a normed space. Consider the nth basis vector xn now and
from the set

xn +M = {xn + z/.z ∈M}

Since for any y,z ∈M,

‖xn + z− (xn + y)‖= ‖z− y‖

Since xn+M is seen to be isometric to M under the mapping z ∈ xn+ z. Hence since M
is closed, xn +M must be closed as well which implies that C(xn +M) is open, [where
C(xn +M) is the complement of xn +M] we now contend that

0 /∈ xn +M

for if it did, we would be able to write for some β1,β2, . . . ,βn−1 ∈ F , 0 = xn +β1x1 +

β2x2+ . . .+βn−1xn−1, which is ridiculous. Also 0 is a point of the open set C(xn+M);
Hence there must be a whole nbd of zero lying entirely within C(xn +M)). In other
words, there must exist Cn > 0 such that for any

x ∈ xn +M,‖x−0‖ ≥Cn,0 ∈C(xn +M)

[Note that here we say that the distance from any point xn +M to zero is positive].
Thus for all αi ∈ F(i = 1, . . . ,n−1),

‖α1x1 +α2x2 + . . .+αn−1xn−1 + xn‖ ≥Cn

or
‖α1

αn
xn + . . .+

αn−1

αn
xn−1 + xn‖ ≥Cn

which implies for any αn ∈ F , that

‖α1x1 +α2x2 + . . .+αnxn‖ ≥ αnCn

because we can write for αn 6= 0.
Suppose now that we had not taken

M =< x1,x2, . . . ,xn−1 >

but had taken instead
< x1,x2, . . . ,xi−1,xi+1, . . . ,xn >



96

since the only fact about M was that its dimension was n− 1. It is clear that in an
analogous fashion we could have arrived at some ci > 0 such that

‖α1x1 + . . .+αnxn‖ ≥Ci|αi|

for any i = 1,2, . . . ,n. In view of this we can say for any

x =
n

∑
i=1

αixi,

‖α1x1 +α2x2 + . . .+αnxn‖ ≥min
i

Ci min
i
|αi|= min

i
Ci‖x‖0

This completes the proof of since a = min
i

Ci is positive.

Corollary: If X is any finite dimensional normed linear space, X is complete [since all
norms are equivalent].

Corollary: If X is a normed linear space and M is any finite dimensional subspace, M
is closed.

Theorem 6.18. Suppose A : X → Y , where X and Y are normed linear spaces. If X is
finite dimensional, A is bounded.

Proof. Suppose dim X = n, that a basis for M is given by

x1,x2, . . . ,xn.

In view of this for any x ∈ X , scalars α1,α2 . . . ,αn such that

x =
n

∑
i=1

αixi,

and A is linear, we have

Ax =
n

∑
i=1

αiAxi

Letting K = ∑
n
i=1 ‖Axi‖, we have

‖Ax‖= ‖
n

∑
i=1

αiAxi‖

≤
n

∑
i=1
|αi|‖Axi‖
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≤ ‖x‖0.K.

since ‖x‖0 = max
i
|αi|.

Since all norms in a finite dimensional space are equivalent and A is bounded with
respect to zeroth norm, it follows that A must be a bounded linear transformation no
matter what norm is chosen for X .
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CHAPTER 7

Weak, Strong Convergence and Compactness on
Linears Operators

Definition 7.1. If ‖Tn−T‖→ 0, then we say that the sequence < Tn > of operators (or
linear transformation) converges to T and this convergence’s is called convergence in
norm or strong convergence. The linear transformation T is said to be the strong limit
of the sequence < Tn >. Also < Tn > is said to converge weakly towards the linear
transformation T if the sequence < Tn(x)> converges to T x.

Definition 7.2. Let E be a normed linear space, < Tn > a sequence of elements of E
and x0 ∈ E. If the sequence f (xn)→ f (x0) as n→ ∞ for all functionals f ∈ E∗, then
< Tn > is said to converge weakly to x0 and we write

xn
w−→ x0.

x0 is called the weak limit of the sequence < Tn >.

Remark: A sequence can not converge weakly to two different limits, that is the weak
limit of a sequence is unique.

We suppose that xn
w−→ x0. and xn→ y0 i.e f (xn)→ f (x0) and f (xn)→ f (y0) for

an arbitrary linear f . Then
f (xn) = f (y0)

or
f (x0− y0) = 0,

Now if we choose an f0 with ‖ f0‖= 1 and f0(x0− y0) = ‖x0− y0‖, then we have
f (x0− y0) = 0 i.e. x0 = y0

Proposition: Let N be a normed linear space and (xn)⊆ N. Then xn→ x in norm
implies xn

w−→ x.

Proof.

| f (xn)− f (x)|= | f (xn− x)|
≤ ‖ f‖‖xn− x‖→ 0asn→ ∞

[since xn→ x in norm ∀ f ∈ N∗ ]
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⇒ xn
w−→ x.

Remark. Thus by above prop, norm convergence or strong convergence⇒ weak con-
vergence.

But the weak convergence need not imply strong convergence. However in a finite
dimensional normed linear space, the two convergences are equivalent.

Theorem 7.3. In a finite dimensional space, the notion of weak and strong convergence
are equivalent.

Proof: Since strong convergence⇒ weak convergence always.
For the converse suppose < Tn > converges weakly i.e. f (xn)→ f (x)∀ f ∈ E∗ and E
is of finite dimensional. Since E is finite dimensional, ∃ a finite system of linearly
independent elements e1,e2, . . . ,ek and every x ∈ E can be represented in the form

x = ξ1e1 +ξ2e2 + . . .+ξkek

with real ξ1,ξ2, . . . ,ξk. Thus

xn = ξ
(n)
1 e1 +ξ

(2)
2 e2 + . . .+ξ

(n)
k ek

Now we consider such functionals fi ∈ E∗ for which fi(ei) = 1 and fi(ek) = 0 for k 6= i.
Thus

fi(xn) = ξ
(n)
i and fi(x0) = ξ

(0)
i

But since the sequence f (xn)→ f (x0) for every linear functional f , so also fi(xn)→
fi(x0) that is

ξ
(n)
i → I0

ui
for i = 1,2, . . . ,k

Let M be the greatest of the numbers ‖ei‖,(i = 1,2, . . . ,k) i.e. M = max‖ei‖.
Then for any given ∈> 0, ∃ an n0 such that

|ξ (n)
i −ξ

(0)
i |<

∈
M.K

for all i = 1,2, . . . ,k and n≥ n0. Thus

‖xn− x0‖= ‖
n

∑
i=1

(ξ
(n)
i −ξ

(0)
i )ei‖

≤
n

∑
i=1
|(ξ (n)

i −ξ
(0)
i )|‖ei‖



100

<∈ .

Hence the sequence < xn > converges strongly to x0.
Compact Operation on Normed Spaces

Definition 7.4. Let X and Y be normed spaces. An operator T : X → Y is called a
compact linear operator (or completely continuous linear operator) if T is linear and
if for every bounded subset M of X , the image T (M) is relatively compact that is the
closure T (M) is compact.

Remark: Many linear operators in analysis are compact. A systematic theory of com-
pact linear operators emerged from the theory of integral equations of the form

(T −λ I)x(s) = y(s) where T x(s) =
∫ b

a
K (s, t)x(t)dt.

where λ is a parameter, Y and kernel K are given functions (subject to certain condi-
tions) and x is the unknown function. Such equations also play a role in the theory
of ordinary and partial differential equations. The term compact is suggested by the
definition. The older term completely continuous can be motivated by the following
Lemma which shows that a compact linear operator is continuous but the converse is
not generally true.

Relation of Compact and Continuous Linear Operator

Theorem 7.5. Let X and Y be normed spaces. Then

(a) Every compact linear operator T : X → Y is bounded, hence continuous

(b) If dimX = ∞, the identity operator I : X →Y (which is continuous) is not compact.

Proof: (a) Since the unit sphere U = {x ∈ X : ‖x‖= 1} is bounded and T is compact,
so by definition T (U) is compact. Now since every normed space is metric space and
by the result “Every compact subset of a metric space is closed and bounded.” so that

sup
‖x‖=1

‖T x‖< ∞.

Hence T is bounded. But by the result “Let T : D(T )→ Y be a linear operator, where
D(T )⊂ X and X ,Y are normed spaces. Then
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(1) T is continuous if and only if T is bounded.

(2) If T is continuous at a single point, T is continuous”.

Thus T is continuous. Hence every compact linear operator T : X → Y is bounded and
hence continuous.

(b) Since the closed unit ball M = {x ∈ X ;‖x‖ ≤ 1} is bounded. If dimX = ∞,
then by the result “If a normed space X has the property that the closed unit ball M =

{x;‖x‖ ≤ 1} is compact, then X is finite dimensional” M can not be compact. Thus
I (M) = M = M is not relatively compact.

Remark. From the definition the compactness of a set, we obtain a useful criterion for
operators.

Theorem 7.6. Let X and Y be normed spaces and T : X→Y be linear operator. Then T
is compact if and only if it maps every bounded sequence < xn > in X onto a sequence
< xn > in Y which has a convergent subsequence.

Proof: If T is compact and < xn > is bounded, then the closure of < xn > in X is
compact. Since every normed space is metric space and by the definition, “a metric
space X is said to be compact if every sequence in X has a convergent subsequence”.
Thus < xn > contains a convergent subsequence.

Conversely assume that every bounded sequence < xn > contains a subsequence
< xnk > such that < T xnk > converges in Y . Consider any bounded subset B ⊂ X ,
and let < yn > be any sequence in T (B). Then yn = T xn for some xn ∈ B and < xn >

is bounded since B is bounded. But by assumption < T xn > contains a convergent
subsequence. Hence by definition of compactness, T (B) is compact. Since < yn > in
T (B) was arbitrary. Thus by definition of compact operator, T is compact.

Remark: The sum T1 +T2 of two compact linear operators from normed space X to
normed space X is compact. Similarly αT1 is compact, where α is any scalar. Thus the
compact linear operators from X into X form a vector space.

Theorem 7.7. Let X and Y be normed spaces and T : X → Y a linear operator. Then

(a) If T is bounded and dimT (X)< ∞, the operator T is compact.

(b) If dimX = ∞, the operator T is compact.
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Proof: (a) Let < xn > be any bounded sequence in X . Then the inequality ‖T xn‖ ≤
‖T‖ .‖xn‖ shows that < T xn > is bounded. Now by the result “In a finite dimensional
normed space X , any subset M ⊂ X is compact if and only if M is closed and bounded”
and dim(X) < ∞ implies that < T xn > is relatively compact. It follows that < T xn >

has a convergent subsequence. But by Theorem 2, T : X → Y is compact if and only if
T maps every bounded sequence < xn > in X onto a sequence < T xn > in Y which has
a convergent subsequence”. Hence the operator T is compact.

(b) Since we know that if a normed space X is finite dimensional then every linear
operator on X is bounded operator. Thus T is bounded. Also dimX = ∞. Now by the
result “If T is a linear operator and dim D(T ) < ∞, then dimR(T ) ≤ n “where D(T )
and R(T ) are domain and range of T .” Thus if dimT (X) = ∞, then dim(X)< ∞. Now
since dimT (X) < ∞ and T is bounded. It follows by (a) part that the operator T is
compact.

Compactness of Limit of the Sequence of Compact Operators

Theorem 7.8. Let < Tn > be a sequence of compact linear operators from a normed
space X into a Banach space Y . If < Tn > is uniformly operator convergent, say
‖Tn−T‖→ 0, then the limit operator T is compact.

Proof: Using a diagonal method, we show that for any bounded sequence < xm > in X ,
the image < T xm > has a convergent subsequence and then apply Theorem 2 i.e. “Let
X and Y be normed spaces and T : X → Y , a linear operator. Then T is compact if and
only if it maps every bounded sequence < xn > in X onto a sequence < T xm > in Y
which has a convergent subsequence.”

Since T1 is compact, < xm > has a subsequence < x1,m > such that < T1x1,m >

is Cauchy. Similarly < x1,m > has a subsequence < x2,m > such that < T2x2,m > is
Cauchy. Continuing in this way, we see that the diagonal sequence < ym >=< xm,m >

is a subsequence of < xm > such that for every fixed positive integer n, the sequence
< Tnym >m∈N is Cauchy. < xm > is bounded, say ‖xm‖ ≤ c for all m. Hence ‖ym‖ ≤ c
for all m. Let ∈> 0. Since Tm→ T , there is an n = p such that∥∥T −Tp

∥∥< ∈ /3c (1)

Since < Tnym >m∈N is Cauchy, there is an N such that∥∥Tpy j−Tpyk
∥∥< ∈

3
( j,k > N) (2)
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Hence we obtain for j,k > N.∥∥Ty j−Tyk
∥∥≤ ∥∥Ty j−Tpy j

∥∥+∥∥Tpy j−Tpyk
∥∥+∥∥Tpy j−Tyk

∥∥
≤
∥∥T −Tp

∥∥ .∥∥y j
∥∥+ ∈

3
+
∥∥Tp−T

∥∥ .∥∥y j
∥∥

<
∈
3c

.c+
∈
3
+
∈
3c

.c (Using (1) and (2))

=∈

This shows that < Tym > is cauchy and converges since Y is complete. But < yn >

is a subsequence of the arbitrary bounded sequence < xm >. Hence using Theorem 2,
which states that “Let X and Y be normed spaces and T : X → Y , a linear operator.
Then T is compact if and only if it maps every bounded sequence < xn > in X onto a
sequence < T xm > in Y which has a convergent subsequence,” we get that the operator
T is compact.

Remark. The above theorem states conditions under which to limit of a sequence
of compact linear operators is compact. This theorem is also important as a tool for
proving compactness of a given operator by exhibiting it as the uniform operator limit
of a sequence of compact linear operators.

Note that the present theorem becomes false if we replace uniform operator con-
vergence by strong operator convergence ‖Tnx−T x‖ → 0. This can be seen from
Tn : l2→ l2 defined by

Tn (x) = (ξ1, . . . ,ξn,0,0, . . .)

Where x = (ξi) ∈ l2. Since Tn is linear and bounded, Tn is compact by Theorem 3(a).
Clearly Tnx→ x = Ix but I is not compact since dim l2 = ∞.

The following example illustrates how the theorem can be used to prove compact-
ness of an operator.

Example (space l2). To prove compactness of T : l2→ l2 defined by

y =
(
η j
)
= T x

where η j = ξ j
/

j for j = 1,2, . . .

Solution. T is linear. If x =
(
ξ j
)
∈ l2, then. Let Tn : l2→ l2 be defined by

Tnx =
(

ξ1,
ξ2

2
,
ξ3

3
, . . . ,

ξn

n
,0,0, . . .

)
.
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Tn is linear and bounded and is compact by Theorem 3(a), Further

‖(T −Tn)x‖2 =
∞

∑
j−n+1

∣∣η j
∣∣2 = ∞

∑
j−n+1

1
J2 .
∣∣ξ j
∣∣2

≤ 1

(n+1)2

∞

∑
j=n+1

∣∣ξ j
∣∣2 ≤ ‖x‖2

(n+1)2

Taking the supremum over all x of norm 1, we see that

‖T −Tn‖ ≤
1

n+1
.

Hence Tn→ T and hence T is compact by the above Theorem 4.

Theorem 7.9. Let X and Y be normed spaces and T : X→Y a compact linear operator.
Suppose that < xn > in X is weakly convergent, say, xn

w−→ x. Then < T xn > is strongly
convergent in Y and has the limit y = T x.

Proof. We write yn = T xn and y = T x. First we show that

yn
w−→ y. (1)

Then we show that

yn→ y (2)

Let g be any bounded linear functional on Y . We define a functional f on X by setting

f (z) = g(T z) (z ∈ X)

f is linear and bounded because T is compact, hence

| f (z)|= |g(T z)| ≤ ‖g‖ .‖T z‖ ≤ ‖T‖ .‖z‖

By definition xn
w−→ x implies f (xn)→ f (x), hence by the definition, g (T xn)→ g(T x),

that is, g(yn)→ g(y) since g was arbitrary, this implies that yn
w−→ y. which proves (1).

Now we prove (2). Assume that (2) does not hold. Then < yn > has a subsequence
< ynk > such that

‖ynk− y‖ ≥ η (3)
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for some η > 0. Since < xn > is weakly convergent, by the result “Let < xn > be
a weakly convergent sequence in a normed space X , say xn

w−→ x, then the sequence
< ||xn||> is bounded”. Thus < xn > is bounded and so is < ynk >. But by Theorem 2,
“Let X and Y be normed spaces and T : X → Y , a linear operator.
Then T is compact if and only if it maps every bounded sequence < xn > in X onto
a sequence < T xn > in Y which has a convergent subsequence”, since the operator T
is compact, < T xnk > has a convergent subsequence say < y j >. Let y j → y. Hence
y j

w−→ y. Since by the result “ Let < xn > be a weakly convergent sequence in a normed
space X , say xn

w−→ x, then every subsequence of < xn > converges weakly to x ”, Thus
by this result and (1) we have y = y. consequently

‖y− y‖→ 0

But
‖yi− y‖ ≥ η > 0 [by(3)]

This contradicts, so that (2) must hold.

Closed Range Theorem

Definition 7.10. Suppose X is a Banach space, M is a subspace of X and N is a subspace
of X∗ (Dual space of X ), neither M nor N is assumed to be closed.

Their annihilators M⊥ and N⊥ are defined as follows:

M⊥ = {x∗ ∈ X∗,< x,x∗ >= 0 for all x ∈M}

N⊥ = {x ∈ X ,< x,x∗ >= 0 for all x∗ ∈M}

Thus M⊥ consists of all bounded linear functionals on X that vanish on M and N⊥ is
the subset of X on which every member of N vanishes. It is clear that M⊥ and N⊥ are
vector spaces. Since M is the intersection of the null spaces of the functionals, M⊥ is a
weak* closed subspace of X∗.

The weak*-topology of X∗ is by definition, the weakest one that makes all func-
tionals

x∗→< x,x∗ >

continuous. Thus the norm topology of X∗ is stronger than its weak*-topology.

Notation. If T maps X into Y , then the null space of T and range of T will be denoted
by N (T ) and ℜ(T ) respectively

N (T ) = {x ∈ X ,T x = 0}
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ℜ(T ) = {y ∈ Y ;T x = y for some x ∈ X}

Theorem 7.11. If X and Y are Banach spaces and if T ∈ B(X ,Y ) [set of bounded or
continuous linear operator], then each of the following three conditions implies the
other two:

(a) ℜ(T ) is closed in Y .

(b) ℜ(T ∗) is weak*-closed in X∗.

(c) ℜ(T ∗) is norm-closed in X∗.

Proof: It is obvious that (b) implies (c). We will prove that (a) implies (b) and that (c)
implies (a).

Suppose (a) holds. Then N (T )⊥ is the weak closure of R(T ∗).

To prove (b), it is therefore enough to show that

N (T )⊥ ⊂ℜ(T ∗)

Pick x∗ ∈ N (T )⊥. Define a linear functional Λ on ℜ(T ) by

ΛT x =< x,x∗ > (x ∈ X)

Note that is well defined for if T x = T x′, then x− x′ ∈ N (T ), hence

< x− x′,x∗ >= 0

The open mapping theorem applies to

T : X →ℜ(T )

since ℜ(T ) is assumed to be a closed subspace of the complete space Y and is therefore
complete. It follows that there exists K < ∞ such that to each y ∈ℜ(T ) corresponds an
x ∈ X with T x = y,‖x‖ ≤ K ‖y‖ and

|Λy|= |ΛTy|= |< x,x∗ >| ≤ K ‖y‖ .‖x∗‖

Thus is Λ continuous. By the Hahn-Banach theorem some y∗ ∈ Y ∗ extends Λ. Hence

< T x,y∗ >= ΛT x =< x,x∗ > (x ∈ X)
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This implies x∗ = T ∗y∗. Since X∗ was an arbitrary element of N (T )⊥, we have shown
that

N (T )⊥ ⊂ℜ(T ∗)

Thus (b) follows from (a).
Suppose next that (c) holds. Let Z be the closure of ℜ(T ) in Y . Define some S

∈ B(X ,Z) by setting Sx = T x. Since (S) is dense in Z. Thus S∗ : Z∗→ X∗ is one-to-
one. If z∗ ∈ Z∗, then by Hahn-extensions theorem, we get an extension y∗ of z∗, for
every x ∈ X ,

< x,T ∗y∗ >=< T x,y∗ >< Sx,y∗ >=< x,S∗z∗ >

Hence S∗z∗ = T ∗y∗. It follows that S∗ and T ∗ have identical ranges. Since (c) is as-
sumed to hold. ℜ(S∗) is closed, hence complete. Apply the open mapping theorem
to

S∗ : Z∗→ℜ(S∗)

Since S∗ is one to one, the conclusion is that there is a constant c > 0 which satisfies

c‖z∗‖ ≤ ‖S∗z∗‖

for every z∗ ∈ Z∗.

Now using the following result

“Suppose U and V are the open unit balls in the Banach space X and Y , respectively.
Suppose T ∈ B(X ,Y ) and C > 0,

(a) If the closure of T (U) contains cV , then

T (U)⊃ cV

(b) If c‖y∗‖ ≤ ‖T ∗y∗‖ for every y∗ ∈ Y ∗, then

T (U)⊃ cV.
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CHAPTER 8

Inner Product and Hilbert Spaces

The notion of dot product and the condition of orthoganality are totally missing
in normed linear space, extention of these notions to any arbitrary infinite dimensional
linear space, leads to definition of inner product space on linear space in such a way
that inner product give rise to norm. The inner product spaces are special normed linear
spaces. A complete normed linear spaces is called Hilbert space. Also every Hilbert
space is a Banach space but not conversely.

The study of Hilbert space includes Schwarz, parallelogram and polrization inequal-
ities. Further defining orthoganal complements and establishing orthoganal decompo-
sition theorem guarantees that there are are plenty of projections in a Hilbert space. The
chapter conludes with proof of projection theorem and Bessel’s inequality.

Definition 8.1. An inner product space X or pre-Hilbert space is a complex linear space
together with an inner product (., .) : X⊗X →C such that

(i) (x,y) = (y,x), ∀x,y ∈ X

(ii) (λx+µy,z) = λ (x,z)+µ (y,z), ∀x,y,z ∈ X and λ ,µ ∈ X

(iii) (x,x)≥ 0 and (x,x) = 0 iff x = 0 , ∀x ∈ X

condition (i) clearly reduces to (x,y) = (y,x) if X is real vector space. From (i) and (ii),
we obtain

(x,cy+dz) =
(
cy+dz,x

)
= c(y,x)+d (z,x)

= c(y,x)+d (z,x)

In any pre-Hilbert space, the following are immediate

(a) (x,y+ z) = (x,y)+(x,z)

(b) (x,λy) = λ (x,y)

(c) (0,y) = (x,0) = 0

(d) (x− y,z) = (x,z)− (y,z)
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Examples

1. Let Cn be the vector space of n tuples. If x = (λ1,λ2, . . . ,λn) and y = (µ1, . . . ,µn)

define

(x,y) =
n

∑
k=1

λkµk

Then all the axioms for pre-Hilbert space are satisfied. This example is known as n-
dimensional unitary space and will be denoted by Cn. In this space, the norm of x is
defined by

‖x‖=

(
n

∑
i=1
|λi|2

)1/2

2. Let C (a,b) be the vector space of continuous functions defined on [a,b] ,a < b.
Define

(x,y) =
∫ b

a
x(t) .y(t)dt

With respect to this inner product, C [a,b] is a pre-Hilbert space. The norm of x in
C [a,b] is introduced by taking

‖x‖=
(∫ b

a
|x(t)|2 dt

)1/2

3. Let P be the vector space of finitely non-zero sequences. If x = (λk) and y = (µk),
define

(x,y) =
n

∑
k=1

λkµk

This space is a pre-Hilbert space with respect to this inner product. The norm of x in
this space is defined by

‖x‖=

(
∞

∑
k=1
|λk|2

)1/2

Theorem 8.2. Each Inner Product space is a normed linear space under ‖x‖= (x,x)1/2.

Since all the properties of norm are satisfied. We notice that

(a) ‖x‖= (x,x)1/2 ≥ 0

(b) ‖x‖= 0⇔ (x,x) = 0 iff x = 0
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(c) ‖αx‖2 = (αx,αx)

= αα (x,x)

= |α|2 ‖x‖2

⇒‖αx‖= |α| ‖x‖

(d) For x,y ∈ X , we have

‖x+ y‖2 = (x+ y,x+ y)≡ (x,x+ y)+(y,x+ y)

= ‖x,x‖+(y,x)+(x,y)+(y,y)

= ‖x,x‖+(y,y)+(x,y)+(x,y)

= ‖x,x‖+(y,y)+2R(x,y)

≤ ‖x‖2 +‖y‖2 +2‖x‖ ‖y‖

= (‖x‖+‖y‖)2

⇒‖x+ y‖ ≤ ‖x‖+‖y‖

Therefore, each pre-Hilbert space is a normed linear space.

Theorem 8.3. The Inner product (Scalar Product) is a continuous function with respect
to norm convergence. (Inner Product in an Hilbert space is jointly continuous).

Proof. If xn→ x and yn→ y, then the number ‖xn‖ ,‖yn‖ are bounded. Let M be their
upper bound. Then

|(xn,yn)− (x,y)|= |(xn,yn)− (xn,y)+(xn,y)− (x,y)|
≤ |(xn,yn)− (xn,y)|+ |(xn,y)− (x,y)|
= |(xn,yn− y)+(xn− x,y)|
≤ ‖xn‖ ‖yn− y‖+‖xn− x‖ ‖y‖ (by Schwarz inequality)

≤M ‖yn− y‖+‖y‖ ‖xn− x‖

Now since ‖yn− y‖ → 0 and ‖xn− x‖ → 0 as n→ ∞, therefore |(xn− yn)− (x,y)| → 0
for n→ ∞ and hence (xn− yn)→ (x,y). Thus inner product in a pre-Hilbert space is
jointly continuous.
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Theorem 8.4. (Cauchy-Schwarz Inequality). If x and y are any two vectors in an inner
product space, then

|(x,y)| ≤ ‖x‖ ‖y‖ .

Proof. We have (x+λy,x+λy)≥ 0 for arbitrary complex λ .

⇒ (x,x+λy)+λ (y,x+λy)≥ 0

⇒ (x,x)+λ (x,y)+λ

[
(y,x)+λ (y,y)

]
≥ 0.

⇒ (x,x)+λ (x,y)+λ

[
(y,x)+λλ (y,y)

]
≥ 0

if we put is λ = −(x,y)
(y,y) , then

(x,x)− (x,y)(x,y)
(y,y)

− (x,y)(y,x)
y,y

+
(x,y)(x,y)(y,y)

(y,y)
≥ 0

⇒ (x,x)− |(x,y)|
2

(y,y)
(x,y)(y,x)

y,y
+

(x,y)(y,x)
(y,y)

≥ 0

⇒ (x,x)− |(x,y)|
2

(y,y)
≥ 0

⇒ |(x,y)|2 ≤ (x,x)(y,y) = ‖x‖2 .‖y‖2

⇒ |(x,y)| ≤ ‖x‖ ‖y‖

Theorem 8.5. (Parallelogram Law). In an Hilbert space H,

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2 ∀ x,y ∈ H.

Proof. Writing out the expression on the left in terms of inner products.

‖x+ y‖2 +‖x− y‖2 = (x+ y,x+ y)+(x+ y,x+ y)

= (x,x)+(x,y)+(y,x)+(y,y)+(x,x)− (x,y)− (y,x)+(y,y)

= 2(x,x)+2(y,y)

= 2‖x‖2 +2‖y‖2



112

Polarization Identity

Theorem 8.6. In a pre-Hilbert space, (inner-product space)

4(x,y) =
[
‖x+ y‖2−‖x− y‖2 + i‖x+ iy‖2− i‖x− iy‖2

]
Proof. We note that

‖x+ y‖2 = ‖x‖2 +‖y‖2 +(x,y)+(y,x) (1)

Replace y by −y, iy by −iy and obtain

‖x− y‖2 = ‖x‖2 +‖y‖2− (x,y)− (y,x) (2)

and

‖x+ iy‖2 = ‖x‖2 +‖y‖2− i(x,y)+ i(y,x) (3)

‖x+ iy‖2 = ‖x‖2 +‖y‖2− i(x,y)− i(y,x) (4)

It follows that

(2) −‖x− y‖2 =−‖x‖2−‖y‖2 +(x,y)+(y,x)

(3) i‖x+ iy‖2 = i‖x‖2 + i‖y‖2 +(x,y)− (y,x)

(4) −i‖x− iy‖2 =−i‖x‖2− i‖y‖2 +(x,y)− (y,x)

Adding (1), (2), (3) and (4), we get

‖x+ y‖2−‖x− y‖2 + i‖x+ iy‖2− i‖x− iy‖2 = 4(x,y)

This completes the proof.

Definition 8.7. A complete pre-Hilbert space (Inner Product space) is called Hilbert
space. Thus a Banach space whose norm is generated by inner product is called Hilbert
space.
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Example 8.8. Denote by H, the set of all sequences x = (λk) of complex number such
that

∞

∑
k=1
|λi|2 < ∞

If x = (λk) and y = (µk) are sequences belonging to H, then by the parallelogram law
for complex numbers,

|λk +µk|2 + |λk +µk|2 = 2 |λk|2 +2 |µk|2

Hence
n

∑
k=1
|λk +µk|3 ≤ 2

n

∑
k=1
|λk|2 +2

n

∑
k=1
|µk|2

for all n. Hence ∑
n
k=1 |λk +µk|2 < ∞ by the comparison test. Hence the sequence

(λk +µk) belongs to H, that is x+ y ∈ H. Furthermore if x = (λk) belongs to and H is
a complex number, then

n

∑
k=1
|λλk|2 = |λ |2

n

∑
k=1
|λk|2

shows that the sequence (λλk) is absolutely summable, it is denoted by λx.
With respect to the operations x+y and λx, H becomes a linear space. We also note

that if x = (λk) and y = (µk) belong to H, then the series

n

∑
k=1

λkµk

converges absolutely. In fact, a and b are real numbers, (a−b)2 ≥ 0 leads to ab ≤
1
2

(
a2 +b2) and in particular, we have

|λkµk| ≤
1
2

(
|λk|2 + |µk|2

Thus ∑
n
k=1 λkµk converges by the comparison test.

This justifies the definition of the inner product for H as

(x,y) =
∞

∑
k=1

λkµk

The axioms for a pre-Hilbert space are easily verified. The norm of an element x in this
space is defined by

‖x‖=

(
∞

∑
k=1
|λk|2

) 1
2
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It can be seen that
‖λx‖= |λ | .‖x‖

and that
‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2

Thus to prove that H is a Hilbert space, it is sufficient to show that H is complete.
Suppose x1,x2, . . . , is a Cauchy sequence in H, that is ‖xm− xn‖ → 0 as m,n→ ∞,

say xn =
(
λ n

k

)
for each k,

∣∣λ m
k −λ n

k

∣∣ ≤ ∑
∞
j=1
∣∣λ m

J −λ n
J

∣∣2 = ‖xm− xn‖2 shows that the
sequence λ 1

k ,λ
2
k , . . . , of k th components is Cauchy. Since the set of complex numbers

is complete, λ n
k → λk as n→ ∞ for suitable λk. It will be shown that ∑

∞
k=1 |λk|2 < ∞

and that < xn > converges to x = (λk).
Let ∈> 0 be given. Let p be an index such that ‖xm− xn‖2 ≤∈ whenever m,n≥ p..
Fix any positive integer r, then we have

∞

∑
k=1
|λ m

k −λ
n
k |

2 ≤ ‖xm− xn‖2 ≤∈

Provided m,n≥ p. Letting m→ ∞,

∞

∑
k=1
|λk−λ

n
k |

2 ≤∈

provided n≥ p, since r is arbitrary, we get

∞

∑
k=1
|λk−λ

n
k |

2 ≤∈ whenever n≥ p (1)

In particular, ∑
∞
k=1

∣∣λk−λ n
k

∣∣2 ≤∈.
Hence the sequence < λk−λ

p
k > belongs to H. Adding to it, the sequence < λ

p
k >

of H, we obtain (λk) = x belongs to H. It follows from (1) that ‖x− xn‖2 ≤∈ whenever
n ≥ p. Thus xn→ x and hence H is complete. This Hilbert space of absolutely square
summable sequences is denoted by l2.

Theorem 8.9. In a pre-Hilbert space, every cauchy sequence is bounded.

Proof. Let < xn > be a cauchy sequence and let N be an index such that ‖xn− xm‖ ≤ 1
whenever m,n≥ N. If n≥ N, then

‖xn‖= ‖(x− xN)+ xN‖
≤ ‖x− xN‖+‖xN‖
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≤ 1+‖xN‖

Thus if M is the largest of the numbers 1+‖xN‖ ,‖x1‖ , . . . ,‖xN−1‖ ,, we have ‖xn‖ ≤M
for all n. Hence < xn > is bounded.

Theorem 8.10. In any pre-Hilbert space, if < xn > and < yn > are Cauchy sequence
of vectors, then < (xn,yn)> is Cauchy (hence convergent) sequence of scalars.

Proof. By Cauchy-Schwarz inequality

|(xn,yn)− (xm,ym)|
= |(xn− xm,yn− ym)+(xm,yn− ym)+(xn− xm,ym)|
≤ |(xn− xm,yn− ym)+(xm,yn− ym)+(xn− xm,ym)|
≤ ‖(xn − xm‖ .‖yn− ym‖+‖xm‖ .‖yn− ym‖+‖xn− xm‖ .‖ym‖

for all m and n. Since ‖xm‖ and ‖ym‖ are bounded. Therefore by the above theorem,
R.H.S. of the above inequality → 0 and m,n→ ∞. Therefore < (xn,yn) > is cauchy
sequence of scalars and hence convergent.

Remark 8.11. It follows from this theorem, that in a pre-Hilbert space if < xn > is
a Cauchy sequence, then (xn,xn) and hence ‖xn‖ is a cauchy sequence of scalars, and
hence convergent.

It is clear from the definition that every Hilbert space is a Banach space. We shall
see that converse need not be true. The question arises under what condition, a Banach
space will become a Hilbert space. In this direction, we have the following result.

Theorem 8.12. A Banach space is a Hilbert space⇔‖gm (parallelogram) law holds.

Proof. Let H be a Hilbert space. Thus it is by definition, a Banach space whose norm
arises from the inner product taken as ‖x‖= (x,x)1/2

Then

‖x+ y‖2 +‖x− y‖2

= (x+ y,x+ y)+(x− y,x− y)

= (x.x)+(y,y)+(x,y)+(y,x)+(x,x)+(y,y)− (x,y)− (y,x)

= 2(x,x)+2(y,y)

= 2‖x‖2 +‖y‖2 .
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Thus if H is a Hilbert space, then it is a Banach space satisfying ‖gm law.

Conversely: Suppose that H is a Banach space and that in H,‖gm law holds good.
We define an inner product in H by

(x,y) =
1
4

[
‖x+ y‖2−‖x+ y‖2

]
(1)

Then (x,x)≥ 0 and (x,x) = 0⇔ x = 0 Moreover (x,x) = ‖x‖2 and (x,y) = (y,x).
It is only to show that

(x1 + x2,y) = (x1,y)+(x2,y)

and
(αx,y) = α (x,y)

by ‖gm law, we note that

‖u+ v+w‖2 +‖u+ v−w‖2 = 2‖u+ v‖2 +2‖w‖2

and
‖u− v+w‖2 +‖u− v−w‖2 = 2‖u− v‖2 +2‖w‖2 .

so that on substracting

‖u+ v+w‖2 +‖u+ v−w‖2−‖u− v+w‖2−‖u− v−w‖2

= 2‖u+ v‖2−2‖u− v‖2

⇒ (u+w,v)+(u−w,v) = 2(u,v) [using(1)]

= (2u,v) (2)

Setting u = w, this implies (2u,v) = (u,v). Now let x1 = u+w,x2 = u+w and y = v to
obtain

(x1,y)+(x2,y) = (x1 + x2,y) [using 2]

Similarly, (ax,y) = a(x,y). Thus a Banach space satisfying ‖gm is a Hilbert space.

Example of a Banach space which is not Hilbert space

Example 8.13. We know that a Banach space is a Hilbert space if and only if ‖gm Law
holds.
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Consider the linear space L1 (0,1) consisting of equivalence classes of functions summable
on [0,1] w.r. to Lebesgue measure with the norm of f ∈ L1 [0,1] as

‖ f‖=
∫ 1

0
| f (x)|dx (1)

L1 [0,1] is a Banach space under this norm.
We show that this norm does not satisfy ‖ law and thus precludes the possibility of

viewing this space as a Hilbert space.
Consider the sets A =

[
0, 1

2

]
and B =

[1
2 ,1
]

and the characteristic functions of these
sets χA and χB. We note that (1) yields.

‖χA +χB‖2 =

(∫ 1

0
|χA +χB|

)2

=

(∫ 1/2

0
|χA +χB|+

∫ 0

1/2
|χA +χB|

)2

=

[
1
2
+

1
2

]2

= l2 = 1

‖χA +χB‖=

(∫ 1

0
|χA +χB|

)2
)1/2

=

(∫ 1/2

0
|χA +χB|+

∫ 0

1/2
|χA +χB|

)2

=

[
1
2
+

1
2

]2

= 1

But

2‖χA‖2 +‖χB‖2 = 2
(

1
2

)2

+2
(

1
2

)2

=
1
2
+

1
2
= 1

Thus

‖χA +χB‖2 +‖χA−χB‖2 6= 2‖χA‖2 +2‖χB‖2

and therefore ‖gm Law is not satisfied and hence L1 [0,1] is not a Hilbert space.

Definition 8.14. A convex set in a Banach space. B is a non empty subset S such that
x,y ∈ S⇒ x(1− t)+ ty ∈ S for every real number t satisfying 0 < t < 1.

If we put t = 1
2 , we see that

x,y ∈ S⇒ x+ y
2
∈ S.
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Theorem 8.15. A closed convex subset C of a Hilbert space H contains a unique vector
of smallest norm.

Proof. We know that being convex C is non empty and x,y ∈C⇒ x+y
2 ∈C.

Let d = In f {‖x‖ ,x ∈C}. There exists a sequence {xn} of vectors such that ‖xn‖→
d. By the convexity of C, xn+xn

2 is in C.
∥∥xn+xn

2

∥∥ ≥ d so ‖xn + xn‖ ≥ 2d. By ‖gm Law,
we have

‖xn + xn‖2 +‖xm + xn‖2 = 2‖xm‖2 +2‖xn‖2

⇒ ‖xm + xn‖2 = 2‖xm‖2 +2‖xn‖2−‖xm + xn‖2

≤ ‖xm‖2 +2‖xn‖2−4d2

→ 2d2 +2d2−4d2 = 0 [‖xn‖→ d] as m,n→ ∞.

Therefore {xn} is a Cauchy sequence in C. Since H is complete and C is closed; C is
complete and their exists a vector x in C such that xn→ x. It is clear by the fact that

‖x‖= ‖limxn‖= ‖d‖= d

That x is a vector in C with smallest norm. To see that x is unique, suppose that x′ is a
vector in C other than x which also has norm d. Then x+x′

2 is also in C and we have by
‖gm law∥∥∥∥x+ x′

2

∥∥∥∥2

=
‖x‖2

2
+
‖x′‖2

2
−
∥∥∥∥x+ x′

2

∥∥∥∥2

<
‖x‖2

2
+
‖x′‖2

2
= d2

which contradicts the definition of d.

Orthogonal Complements

Definition 8.16. Two vectors x and y in a Hilbert space H are said to be orthogonal if

(x,y) = 0

Since (x,y) = (y,x) we have x⊥y⇔ y⊥x It is also clear that x⊥0 for every x. More-
over since (x,x) = ‖x‖2 ,0 is the only vector orthogonal to itself, if x⊥y, then‖x+ y‖2 =

‖x− y‖2 = ‖x‖2 +‖y‖2 (This is known as Pythagorean theorem).
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Definition 8.17. A vector x is said to be orthogonal to a non empty set S (written as
x⊥S) if x⊥y for every y ∈ S.

Definition 8.18. The set of all vectors orthogonal to S is called orthogonal complement
of S and is denoted by S⊥.

Theorem 8.19. Let M be a closed linear subspace of a Hilbert space H, let x /∈M, and
let d be the distance from x to M. Then there exists a unique vector y0 in M such that

‖x− y0‖= d.

Proof. Let M be a closed linear subspace of H,xM and d be the distance from x to. M
Then

inf{‖x− y‖ ;y ∈M}

Select a sequence {yn} in M such that Ln f
n→∞

‖xn− yn‖= d. Then by parallelogram law

‖ym− yn‖2 = ‖(ym− x)− (yn− x)‖2

= 2‖ym− x‖2 +2‖yn− x‖2−‖(ym− x)− (yn− x)‖2

= 2‖ym− x‖2 +2‖yn− x‖2−‖ym + yn−2x‖2

= 2‖ym− x‖2 +2‖yn− x‖2−4
∥∥∥∥ym + yn

2
− x
∥∥∥∥2

.

Since ym+yn
2 ∈M, we have ∥∥∥∥ym + yn

2
− x
∥∥∥∥≥ d.

Therefore

‖ym− yn‖2 ≤ 2‖ym− x‖2 +2‖yn− x‖2−4d2

→ 2d2 +2d2−4d2 = 0, m,n→ ∞.

Hence {yn} is a Cauchy sequence in a closed linear space of a complete space H.
Therefore ∃ an element y0 ∈M such that

y0 = lim
n→∞

yn.

Also

d = lim
n→∞
‖x− yn‖
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= ‖x− limyn‖
= ‖x− y0‖

Uniqueness of y0. Suppose y1 and y2 are two vectors in M such that ‖x− x1‖= d and
‖x− x2‖= d. Then to show that y1 = y2.

Since M is a subspace of H, therefore

y1,y2 ∈M⇒ (y1 + y2)

2
∈M.

Hence by the definition of d, we have∥∥∥∥x− y1 + y2

2

∥∥∥∥≥ d so that ‖2x− (y1 + y2)‖ ≥ 2d.

By parallelogram Law, we have

‖(x− y1)− (x− y2)‖2 = 2‖x− y1‖2 +2‖x− y2‖2−‖(x− y1)− (x− y2)‖2

⇒ ‖y2− y1‖2 = 2‖x− y1‖2 +2‖x− y2‖2 +2‖x− y2‖2−‖2x− (y1 + y2)‖2

≤ 2d2 +2d2−4d2 = 0

Thus ‖y2− y2‖2 ≤ 0 but ‖y2− y2‖2 ≤ 0.

⇒‖y2− y1‖2 = 0⇒ y2− y1 = 0⇒ y1 = y2.

Theorem 8.20. If M is a proper closed linear subspace of a Hilbert space H, then there
exists a non zero vector z0 in H such that z0⊥M.

Proof. Since M is a proper linear subspace of H, then there is a vector x in H which
does not belong to M. Let d be distance from x to M. Then (by the above theorem)
there exists a vector y0 in M such that

‖x− y0‖= d.

Define z0 = x− y0.
Since d > 0,z0 is a non-zero vector, we shall show that z0⊥M. It is sufficient to

show that if y is an arbitrary vector in M.
Then z0⊥y.
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For any scalar, we have

‖z0−αy‖= ‖x− (y0 +αy)‖ ≥ d = ‖z0‖
⇒ ‖z0−αy‖2−‖z0‖2 ≥ 0

⇒ (z0−αy,z0−αy)−‖z0‖2 ≥ 0

⇒ (z0,z0)−α (z0,y)−α (y,z0)+αα (y,y)−‖z0‖2 ≥ 0

⇒ ‖z0‖2−α (z0,y)−α (y,z0)+ |α|2 ‖y‖2 ≥ 0

⇒ −α (z0,y)−α (y,z0)+ |α|2 ‖y‖2 ≥−‖z0‖2 (1)

Set α = β (z0,y) for an arbitrary real number β . Then (1) becomes

−2β |(z0,y)|2 +β
2 |(z0,y)|2 ‖y‖2 ≥ 0.

If we now put a = |(z0,y)|2 and

b = ‖y‖2 ,

we obtain

−2βa+β
2ab≥ 0

i.e.

βa(βb−2)≥ 0 (2)

for all real. However if a > 0,, then (2) is obviously false for all sufficient small
positive β . We see from this that a = 0 i.e. (z0,y) = 0 which implies that z0⊥y Hence
the theorem.

Theorem 8.21. If M and N are closed linear subspaces of a Hilbert space H such that
M ⊥N, then the linear subspace M+N is also closed.

Proof. Let z be a limit point of M+N. It suffices to show that z∈M+N. Let < zn > be
a sequence of points in M+N such that zn→ z. By the assumption that M ⊥N, we see
that M and N are disjoint, so each zn can be written uniquely in the form zn = xn + yn,
where xn ∈M and yn ∈ N. For each ∈> 0, there exists apositive integer N such that

‖zm− zn‖<∈ ∀ m,n≥ N (∈)
⇒ ‖zm− zn‖2 <∈2
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⇒ ‖(xm + ym − (xn− xn)‖2 <∈2

⇒ ‖(xm− xn)+(xn− yn)‖2 <∈2

⇒ ‖xm− xn‖2 +‖xm− xn‖<∈2

⇒ ‖xm− xn‖<∈, ‖xm− xn‖<∈ .

Thus < xn > and < yn > are Cauchy sequences.
But M and N are closed linear subspaces of x H and therefore, complete. Hence

there exists vectors x and y in M and N respectively such that

xn→ x. and yn→ y Then

z = limzn = lim(xn + yn) = limxn + limyn = x+ y ∈M+N.

Thus every limit point of M+N is in and hence M+N is also closed.

Projection Theorem

Theorem 8.22. If M is a closed linear subspace of a Hilbert space H, then

H = M⊕M⊥, where M⊥ = The set of all vectors orthogonal to M.

Proof. Since M and M⊥ are orthogonal closed linear subspaces of H, by the previous
Theorem, M+M⊥ is also a closed linear subspace of H. Moreover, since M⊥M⊥, we
have M ∩M⊥ = {0}. So it is sufficient to show that H = M +M⊥. If this is not so,
then M +M⊥ is a proper closed linear subspace of H and therefore ∃ a vector z0 6= 0
such that z0⊥

(
M+M⊥

)
which is possible only when z0⊥M and z0⊥

(
M+M⊥

)
that is

when z0⊥M and z0 ∈M⊥⊥ that is when z0 ∈M⊥∩M⊥⊥. But this is impossible since
M⊥∩M⊥⊥ = {0}. Hence H = M+M⊥.

Definition 8.23. A non empty subset {e1,e2, . . . ,en, . . .} of H is called orthonormal.

If
(
ei,e j

)
=

{
0 if i 6= j
1 if i = j

Kronoecker Delta δi j =

{
0 i 6= j
1 i = j

Thus orthonormal set consists of mutually orthogonal unit vectors [ ‖ei‖ = 1 for
every i ].

If H contains only the zero vector, then it has no orthonormal sets. If H contains a
non-zero vector x and if we normalize x by considering e = x

‖x‖ , then the single element
set {e} is clearly an orthonormal set. In general if {xi} is a non empty set of orthogonal
non-zero vector in H and if xi ’s are normalized by replacing each of them by ei =

xi
‖xi‖ ,
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Then the resulting set {ei} is an orthonormal set. If should be noted that if < xi > is a
non-empty set of mutually orthogonal non-zero vectors in H and if in this set, each xi

is replaced by the corresponding unit vector ei =
xi
‖xi‖ , then the resulting set {ei} is an

orthonormal set.

Example 8.24. The subset {e1,e2, . . . ,en,} of ln
2 where ei is the n-tuple with 1 in the

ith place and 0’s elsewhere, then {e1,e2, . . . ,en,} is an orthonormal set in this space.

Example 8.25. If {en} is a sequence with 1 in the nth place, and zero elsewhere, then
{e1,e2, . . . ,en,} is an orthonormal set in ln

2 .

Theorem 8.26. Let {e1,e2, . . . ,en} be a finite orthonormal set in a Hilbert space H,

then

n

∑
i=1
|(x,ei)|2 ≤ ‖x‖2 (1)

and further

x−
n

∑
i=1

(x,ei)ei⊥e j (2)

Proof. The inequality (1) follows from the following computation.

0≤

∥∥∥∥∥x−
n

∑
i=1

(x,ei)ei

∥∥∥∥∥
2

=

(
x−

n

∑
i=1

(x,ei)ei, x−
n

∑
i=1

(
x,e j

)
e j

)

=

(
x,x−

n

∑
j=1

(x,ei) e j
)
−

n

∑
i=1

(x,ei)(ei,x)−
n

∑
j=1

(
ei,e j

)
e j
))

=

(
x,x−

n

∑
j=1

(
x,e j

)(
x,e j

)
−

n

∑
i=1

(x,ei)

[(
ei,x)−

n

∑
j=1

(
x,e j

)(
x,e j

)]

= (x,x)−
n

∑
j=1

(
x,e j

)(
x,e j

)
−

n

∑
i=1

(x,ei)(ei,x)

+
n

∑
i=1

n

∑
i=1

(x,ei)
(
x,e j

)(
ei,e j

)
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= ‖x‖2−
n

∑
i=1

(x,ei)(x,ei)−
n

∑
j=1

(
x,e j

)(
x,e j

)
+

n

∑
i=1

n

∑
j=1

(x,ei)
(
x,e j

)(
ei,e j

)
= ‖x‖2−

n

∑
i=1
|(x,ei)|2

⇒
n

∑
i=1
|(x,ei)|2 ≤ ‖x‖2

Also we observe that(
x−

n

∑
i=1

(x,ei)ei,e j

)
=
(
x,e j

)
−

n

∑
i=1

(x,ei)
(
ei,e j

)
=
(
x,e j

)
−
(
x,e j

)
= 0.

Hence

x−
n

∑
i=1

(x,ei)ei⊥e j for each j.

Inequality (1) is called the special case of a more general inequality known as Bessel’s
inequality.

Theorem 8.27. If < ei > is an orthonormal set in a Hilbert space H and if x is any
vector in H, then the set S = {ei;(x,ei) 6= 0} is either empty or countable.

Proof. For each positive integer n, consider the set

Sn =

{
ei; |(x,ei)|2 >

‖x‖2

n

}

Sn can not contain more than n−1 vectors, since in that case ∑
p
i=1 |x,ei|2 > ‖x‖2 when

p > (n−1) and thus contradicts the above theorem. Also, each member of S is con-
tained in

⋃
∞
n=1 Sn. But union of a countable collection of countable sets is countable.

Therefore
⋃

∞
n=1 Sn and hence S is countable.
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Theorem 8.28. If < ei > is an orthonormal set in a Hilbert space H, then

∑ |(x,ei)|2 ≤ ‖x‖2

for every vector x ∈ H.

Proof. Let S = {ei;(x,ei) 6= 0}. If S is empty, then we define ∑ |(x,ei)|2 to be the
number zero and the result is obvious in this case. We now assume that S is non-empty.
Then by the above theorem, it must be finite or countably infinite. If S is finite, then it
can be written in the form

S = {e1,e2, . . .en}

for some +ve integer n. In this case, we define ∑ |(x,ei)|2 to be ∑ |(x,ei)|2 . The in-
equality to be proved now reduce to

n

∑
i=1
|(x,ei)|2 ≤ ‖x‖2

which has already been proved.
Now consider the case

S = [ei,(x,ei) 6= 0]

is countably infinite.
Let the vectors in S be arranged in a definite order.

S = {e1,e2, . . . ,en, . . .}

By the theory of absolutely convergent series, if ∑
∞
n=1 |(x,en)|2 converges, then every

series obtained from it by rearranging its terms and also converges and all such series
have the same sum. We, therefore, define ∑ |(x,ei)|2 to be ∑

∞
n=1 |(x,en)|2 and it fol-

lows from the above remark that ∑
∞
n=1 |(x,en)|2 is a non-negative extended real number

which depends only on S and not on the arrangement of its vectors. We now observe
that

∑ |(x,ei)|2 =
n

∑
i=1
|(x,ei)|2

= lim
n→∞

n

∑
i=1
|(x,ei)|2

= lim
n→∞
‖x‖2 = ‖x‖2
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Hence
∞

∑
n=1
|(x,en)|2 ≤ ‖x‖2 for every x ∈ H.

Theorem 8.29. If < ei > is an orthonormal set in a Hilbert space H, and if x is any
vector in H, then

x−∑(x,ei)ei⊥e j

for each j.

Proof. We set
S = {ei,(x,ei) 6= 0}

when S is empty, we define ∑
n
i=1 (x,ei)ei to be the vector zero and then the required

result reduces to the statement that x−0= x is orthogonal to each e j, which is precisely,
what is meant by saying that S is empty. When S is non-empty and finite, then it can be
written in the form.

S =< e1,e2, . . . ,en >

and we define ∑(x,ei)ei to be ∑(x,ei)ei and in that case the required result reduces to
x−∑

n
i=1 (x,ei)ei⊥e j which has already been proved.

We may assume for the remainder of proof that S is countably infinite. Let the vec-
tors in S be listed in a definite order S =< e1,e2, . . . ,en, . . . >. We put Sn−∑

n
i=1 (x,ei)ei

and we note that for m > n, we have

‖Sm−Sn‖2 =

∥∥∥∥∥ m

∑
i=n+1

(x,ei)ei

∥∥∥∥∥
2 m

∑
i=n+1

|(x,ei)|2 ≤ ‖x‖2 .

Bessel’s inequality shows that the series ∑
∞
n=1 |(x,en)|2 converges and so < Sn > is a

Cauchy in H and since H is complete, this sequence converges to a vector S, which we
write in the form S = ∑

∞
n=1 (x,en)en.

We now define ∑
n
i=1 (x,ei)ei to be ∑

∞
n=1 (x,en)en (without considering the effect of

rearrangement) and observe that the required result follows from x−∑
n
i=1 (x,ei)ei⊥e j

and the continuing of the inner product.(
x−

n

∑
i=1

(x,ei)ei,e j

)
=
(
x−S,e j

)
=
(
x,e j

)
−
(
S,e j

)
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=
(
x,e j

)
−
(

lim
n→∞

Sn,e j

)
=
(
x,e j

)
− lim

n→∞

(
Sn,e j

)
=
(
x,e j

)
−
(
x,e j

)
= 0.

All that remains to show that this definition of ∑(x,ei)ei is valid in the sense that it
does not depend on the arrangement of vectors in S. Let the vectors in S be rearranged
in any manner;

S = { f1, f2, . . . , fn, . . . ,}

We put S′n = ∑
n
i=1 (x, fi) fi and we see as above that the sequence < fn > converges to

the limit S′, which we write in the form S′ = ∑
∞
n=1 (x, fn) fn We conclude the proof by

showing that S′ equals S. Let ∈> 0 be given and let n0 be +ve integer so large that
if n ≥ n0, then ‖Sn−S‖ <∈, and ‖S′n−S′‖ <∈ and ∑

∞
i=n0+1 |(x,ei)|2 <∈2 . For some

positive integer m0 > n0, all terms of Sno occure among those of S′m0
so S′m0

−S′n0
is a

finite sum of terms of the form (x,ei)ei for e = n0 +1,n0 +2, . . . This yields

∥∥S′m0
−S′n0

∥∥2 ≤
∞

∑
i=n0+1

|(x,ei)|2 <∈2 .

So ∥∥S′m0
−S′n0

∥∥<∈
and ∥∥S′−S

∥∥≤ ∥∥S′−S′m0

∥∥+∥∥S′m0
−S′n0

∥∥+‖Sn0−S‖<∈+ ∈+ ∈= 3 ∈

Since ∈ is arbitrary, this shows that S′ = S.

Definition 8.30. An orthonormal set E = {ei} in a Hilbert space H is said to be com-
plete if the only vector orthogonal to all elements of E is zero. Thus an orthonormal
set < ei > is complete if there does not exist a single vector which is orthogonal to all
vectors in E, unless the vector is zero. That is, if it is not possible to adjoin a vector
e to < ei > in such a way that < ei,e > is an orthonormal set which properly contains
< ei >.

Theorem 8.31. Every non-zero Hilbert space contains a complete orthonormal set.
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Proof. Let H be a non-zero Hilbert space and x ∈ H,x 6= 0. Normalize x by writing
e = x

‖x‖ , then clearly < e > is an orthonormal set. It follows therefore that every non-
zero Hilbert space surely contains orthonormal sets. Consider the collection of all
possible orthonormal sets in H, then the collection has a maximal member M since
by Zorn’s lemma, if P is partially ordered set in which every chain has an upper bound,
then P possesses a maximal element, we shall show that M is complete. Suppose that
y 6= 0 and y⊥M then put

z =
y
‖y‖

we observe M∪< z > that is also an orthonormal set and thus contradicts the maximal-
ity of M. Hence y⊥M only if y = 0.

Theorem 8.32. Let H be a Hilbert space and let < ei > be an orthonormal set in H.
Then the following conditions are all equivalent to one another:

(1) < ei > is complete

(2) x⊥< ei >⇒ x = 0.

(3) If x is any arbitrary vector in H, then x = ∑(x,ei)ei.

(4) If x is any arbitrary vector in H, then ‖x‖2 = ∑ |(x,ei)|2

Proof. (1)⇒(2): Let < ei > be complete, if (2) is not zero, then ∃ a vector x 6= 0, such
that x⊥ < ei >. Define e = x

‖x‖ then the vector e (is a unit vector and) is orthogonal
to each member of < ei >. Hence the set obtained by joining e to < ei > becomes an
orthonormal set containing < ei >. This contradicts the completeness of < ei >. Hence
⊥< ei >⇒ x = 0.

(2)⇒(3): Suppose that x⊥< ei >⇒ x = 0. Let x be an arbitrary element in H, then
x−∑(x,ei)ei is orthogonal to each e j for all j and therefore to < ei >. Therefore (2)
implies that

x−∑(x,ei)ei = 0

⇒ x = ∑(x,ei)ei

(3)⇒(4). Suppose that x is an arbitrary vector in H such that. x−∑(x,ei)ei

Then by inner product, we have

∥∥x2∥∥= (x,x) =

(
∑

i
(x,ei)ei,∑

j

(
x,e j

)
e j

)
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= ∑
i
(x,ei)

{
∑

j
(x,ei)

}(
ei,e j

)
= ∑

i
(x,ei)(x,ei)

= ∑
i
|(x,ei)|2 .

(4)⇒(1): We are given that if x is an arbitrary vector in H, then ‖x‖2 = ∑ |(x,ei)|2.
Suppose that < ei > is not complete, then it is a proper subset of an orthonormal set
< ei,e >. Since e is orthogonal to all ei’s such that ‖e‖= 1, we have

‖e‖2 = ∑ |(e,ei)|2 = 0⇒ e = 0

this contradicts the fact that e is a unit vector. Hence < ei > is complete.

Remark 8.33. If < ei > is a complete orthonormal set in a Hilbert space H and let x
be an arbitrary vector in H, then the numbers < x,ei > are called Fourier coefficients
of x, the expression x = ∑(x,ei)ei is called the Fourier expansion of x and equation
‖x‖2 = ∑ |(x,ei)|2 is called Parseval’s equation.

Example 8.34. Consider the Hilbert space L2 [0,2π]. This space consists of all complex
functions defined on [0,2π] which are Lebesgue measurable and square integrable in
the sense that ∫ 2π

0
| f (x)|2 dx < ∞.

Norm and Inner product in L2 (0,2π) are defined by

‖ f‖=
(∫ 2π

0
| f (x)|2 dx

)1/2

( f ,g) =
∫ 2π

0
f (x) .g(x)dx

A simple computation shows that the function einx for n = 0,±1,±2, . . . are mutually
orthogonal in L2,

∫ 2π

0
einxe−inxdx =

{
0, m 6= n
2π if m 6= n
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It follows from this that the functions en (n = 0,±1,±2, . . .) defined by en (x)= einx/
√

2π

from an orthonormal set in L2. For any function f in L2, the numbers

Cn = ( f ,en) =
1√
2π

∫ 2π

0
f (x)e−inxdx (1)

are its classical Fourier coefficients and Bessel’s inequality takes the form.
∞

∑
n=−∞

|Cn|2 ≤
∫ 2π

0
| f (x)|2 dx. < ∞.

It is a fact of very great importance in the theory of Fourier series that the orthonormal
set < en > is complete in L2. As we have seen that for every f in L2, Bessel’s inequality
can be strengthened to Parseval’s equation:

∞

∑
n=−∞

|Cn|2 =
∫ 2π

0
| f (x)|2 dx.

The previous theorem also tells us that the completeness of < en > is equivalent to the
statement that each f in L2 has a Fourier expansion

f (x) =
1√
2π

∞

∑
n=−∞

Cne−inx.

Gram-Schmide Orthogonalization Process
Suppose that < x1,x2 . . . ,xn, . . . > is a linearly independent set in a Hilbert space

H. Our aim is to convert it into the corresponding orthonormal set < e1,e2, . . . ,en, . . . >

with the property that for each n, the linear subspace of H is spanned by < e1,e2, . . . ,en, . . . >

Our first step is to normalize x1 by putting

e1 =
x1

‖x1‖

Let us consider x2− (x2,e1)e1. It is orthogonal to e1 and we normalize this by putting

e2 =
x2− (x2,e1)e1

‖x2− (x2,e1)e1‖

Now e1 and e2 are orthogonal. Consider x3− (x3,e1)e1− (x3,e2)e2.. It is orthogonal
to e1 and e2. We normalize it by

e2 =
x3− (x3,e1)e1− (x3,e2)e2

‖x3− (x3,e1)e1− (x3,e2)e2‖

We see that (x3,e1)−0(x3,e2) = 0. Continuing this process, we obtain an orthonor-
mal set < e1,e2, . . . ,en, . . . > with the required properties.
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CHAPTER 9

Conjugate of Hilbert Spaces

In the chapter 4 and 5, we have studied conjugate of sequence spaces and
obtained series representation of some conjugate spaces like lp space. We have also
explained that we can not obtain the conjugate space of l∞ with the tool developed
in text. But in case of general Banach space the conjugate space of Banach space is
different Banach space with different norm. The most surprising fact about conjugate
space of Hilbert space H is that the conjugate space H∗ of H is in some sense is the
same as H itself. The theorem identifying H with H∗ is known as Riesz-Representation
theorem for continuous linear functional on H, l2 serves as an instance of this theorem.
Futher in present chapter a correspondance between H and H∗ is established. Also we
prove Riesz-Representation theorem for continuous linear functional on H. Finally we
show that H∗ is itself a Hilbert space and H is reflexive.

Theorem 9.1. Let y be a fixed vector in Hilbert Space H and let fy be a function defined
as fy(x) = (x,y) for every x ∈ H. Then fy is a functional on H and ‖y‖= ‖ fy‖.

Proof. Let H be a Hilbert space and H∗ its conjugate space. Let y be a fixed vector in
H, Define a function fy on H by

fy (x) = (x,y) ,∀x ∈ H.

We assert that fy is linear, for

fy (x1 + x2) = (x1 + x2,y) ∀ x1 + x2 ∈ H

= (x1 + x)+(x2,y)

= fy (x1)+ fy (x2,)

and

fy (αx) = (αx,y)

= α (x,y) = α ( fy(x))

Also ∣∣ fy (x)
∣∣= |(x,y)| ≤ ‖x‖ .‖y‖ (By Schwartz’s Inequality)
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which proves that ∥∥ fy
∥∥≤ ‖y‖ (1)

which implies that fy is continuous Thus fy is linear and continuous mapping and hence
is a linear functional on H. On the other hand if y = 0, then

fy (x) = (x,0) = 0⇒
∥∥ fy
∥∥= ‖y‖= 0.

If y 6= 0, then∥∥ fy
∥∥= sup

{∣∣ fy (x)
∣∣ ;‖x‖= 1

}
≥
∣∣∣∣ fy

(
y
‖y‖

)∣∣∣∣ {Beacuse|| y
||y||
||= 1}

=

∣∣∣∣( y
‖y‖

)
,y
∣∣∣∣

⇒ || fy|| ≥ ||y|| (2)

Hence from (1) and (2), we have ∥∥ fy
∥∥= ‖y‖

Thus for each y ∈ H. There is a linear functional fy ∈ H∗ such that∥∥ fy
∥∥= ‖y‖ .

Hence the mapping y→ fy is a norm preserving mapping of H into H∗,

Riesz-Representation Theorem for Hilbert spaces

Theorem 9.2. Let H be a Hilbert space and let f be an arbitrary functional in H∗. Then
there exists a unique vector y in H such that f (x) = (x,y) for every x in H.

Proof. We shall show first that if such a y exists, then it is necessarily unique. Let
y′ be another vector in H such that f (x) = (x,y′). Then clearly (x,y) = (x,y′) i.e.
(x,y− y′) = 0 for all x in H. Since zero is the only vector orthogonal to every vector,
this implies that y− y′ = 0 which implies that y′ = y.

Now we turn to the existence of such vector y. If f = 0, then it clearly suf-
fices to choose y = 0. We may therefore assume that f 6= 0. The null space M =
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{x ∈ H; f (x) = 0} is thus a proper closed linear subspace of H and therefore there ex-
ists a non-zero vector y0 in H which is orthogonal to M. We show that if is a suitably
chosen scalar, then the vector y = αy0 meets our requirements. If x ∈M, then whatever
values of may be, we have

f (x) = (x,αy0) = 0.

We now choose x = y0. Then we must have

f (y0) = (y0,αy0) = α (y0,y0) = α ‖y0‖2 .

and therefore we must choose our scalar α such that

α =
f (y0)

‖y‖2 or α =
f (y0)

‖y‖2

therefore it follows that the vector αy0 = f (y0)

‖y‖2 .y0 satisfies the required condition for

each x ∈M and for x = y0. Each x in H can be written in the form x = m+βy0,m ∈M.
For this all that is necessary is to choose β in such a way that f (x−βy0) = f (x)−
β f (y0) = 0 and this is justified by putting β = f (x)

f (y0)
.

Now we show that the conclusion of the theorem holds for each x in H. For this, we
have

f (x) = f (m+βy0) = f (m)+β f (y0)

= (m,y)+β (y0,y)

= β (m+βy0,y) = (x,y)

Remark 9.3. It follows from this theorem that the norm preserving mapping of H into
H∗ defined by y→ fy where fy (x) = (x,y) is actually a mapping of H onto H∗.

Remark 9.4. It would be pleasant if y→ fy were also a linear mapping. This is not
quite true, however, for

fy1 + fy2 = fy1 + fy2 and fαy = α fy (1)

Also it follows from (1), that the mapping y→ fy is an isometry, for∥∥ fx− fy
∥∥= ∥∥ fx−y

∥∥= ‖x− y‖ .
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The Adjoint of an operator

Let y be a vector in a Hilbert space H and fy its corresponding functional in H∗.
Operate with T ∗ on fy to obtain a functional fz = T ∗ fy and return to its correspond-

ing vector z in H. There are three mappings under consideration here (H→ H∗→ H∗→ H)

and we are forming their product:

y→ fy→ T ∗ fy = fz→ z (1)

An operator T ∗ defined on H by
T ∗ (y) = z

is called adjoint of operator T .
The same symbol is used for the adjoint of T as for its conjugate because these

two mappings are actually the same if H and H∗ are identified by means of natural
correspondence. It is easy to keep track of whether T ∗ signifies the conjugate or the
adjoint of T by noticing whether it operates on functionals or on vectors.

Let x be an arbitrary vector in H. Then we have

(T ∗ fy)(x) = fy (T (x)) = (T (x) ,y)

and
(T ∗ fy)(x) = fz (x) = (x,T ∗y)

so that
(T x,y) = (x,T ∗y) for all x and y.

The adjoint of an operator T is unique, for let T be another operator on H. such that

(T x,y) = (x,T ∗y) for all x,y ∈ H.

⇒ (x,T ∗y) =
(
x,T ′y

)
⇒ (x,T ∗y−T ∗y) = 0.

⇒ T ∗y−T ′y = 0

⇒ T ∗y = T ′y ∀ y ∈ H.

⇒ T ∗ = T ′

We now prove that T ∗ actually is an operator on H (all we know so far is that it maps
H into itself) for any y and z and for all x in H, we have

(x,T ∗ (αy+β z)) = (T x,αy+β z)
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= α (T x,y)+β (T x,y)

= α (x,T ∗y)+β (x,T ∗y)

= (x,αT ∗y)+(x,βT ∗y)

= (x,αT ∗y+βT ∗z)

Hence T ∗ is linear. It remains to show that T ∗ is cont. To prove this, we note that

‖T ∗y‖2 = (T ∗y,T ∗y) = (T T ∗y,y)

≤ ‖T T ∗y‖ ‖y‖
≤ ‖T‖‖T ∗y‖‖y‖

which implies that ‖T ∗y‖ ≤ ‖T‖‖y‖ for all y and therefore

‖T ∗‖ ≤ ‖T‖

Hence T ∗ is continuous. It follows therefore that T → T ∗ is a mapping of β (H) into
itself. This mapping is called the adjoint operatoron β (H).

Theorem 9.5. The adjoint operator T → T ∗ on β (H) has the following properties:

(1) (T1 +T2)
∗ = T ∗1 +T ∗2

(2) (αT )∗ = αT ∗

(3) (T1T2)
∗ = T ∗2 T ∗1

(4) T ∗∗ = T

(5) ‖T ∗‖= ‖T‖

(6) ‖T ∗T‖= ‖T‖2

for all scalars and T1,T,T2 ∈ β (H).

Proof. To prove (1), we have(
x,(T1 +T2)

∗ y
)
= ((T1 +T2)x,y)

= (T1x+T2x,y)

= (T1x,y)+(T2x,y)

= (x,T ∗1 y)+(x,T ∗2 y)
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= (x,T ∗1 y+T ∗2 y)

= (x,(T ∗1 +T ∗2 )y)

⇒ (T1 +T2)
∗ = T ∗1 +T ∗2

(2) If x ∈ H, then(
x,(αT )∗ y

)
= (αT x,y)

= α (T x,y) = α (x,T ∗y)

= (x,αT ∗y) = (x,(αT ∗)y)

⇒ (αT )∗ = αT ∗

(3) For all x,y ∈ H, we have(
x,(T1T2)

∗ y
)
= ((T1T2)x,y)

= (T1 (T2x) ,y)

= (T2x,T ∗1 y)

= (xT ∗2 (T ∗1 y))

= (x,(T ∗2 T ∗1 )y)

Thus by the uniqueness of adjoint operator.

(T1T2)
∗ = T ∗2 T ∗1

(4) For all x,y ∈ H, we have

(x,T ∗∗y) =
(
x,(T ∗)∗ y

)
= (T ∗x,y)

= (y,T ∗x) = (Ty,x)

⇒ T ∗∗ = T

(5) Let y be an arbitrary vector in H. Then

‖T ∗y‖2 = (T ∗y,T ∗y)

= (T T ∗y,y)

= |(T T ∗y,y)|
≤ ‖T T ∗y‖ ‖y‖
≤ ‖T‖ ‖T ∗y‖ ‖y‖
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⇒ ‖T ∗y‖ ≤ ‖T‖ ‖y‖
⇒ ‖T ∗‖ ≤ ‖T‖

Replacing T be T ∗ in the above inequality, we have∥∥(T ∗)∗∥∥≤ ‖T ∗‖
⇒ ‖T‖ ≤ ‖T ∗‖

Hence ‖T‖= ‖T ∗‖.
(6) To prove this equality, we have

‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖= ‖T‖ ‖T‖ [using (5)]

= ‖T‖2

and

‖T x‖2 = (T x,T x) = (x,T ∗T x)

≤ ‖x‖ ‖T ∗T x‖
≤ ‖x‖ ‖T ∗T‖ ‖x‖
= ‖x‖2 ‖T ∗T‖

⇒

{
‖T x‖2

‖x‖2 , x 6= 0

}
≤ ‖T ∗T‖

⇒ sup

{
‖T x‖2

‖x‖2 ,x 6= 0

}
≤ ‖T ∗T‖

⇒ ‖T‖2 ≤ ‖T ∗T‖ (2)

from (1) and (2)

Example 9.6. Show that adjoint operation is one-one onto as mapping of B(H) into
itself.

Solution: Let φ : B(H)→ B(H) is defined as

φ(T ) = T ∗,∀T ∈ B(H)
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φ is one-one: Let T 1,T 2 ∈ B(H), then

φ(T1) = φ(T2)

⇒ T ∗1 = T ∗2
⇒ (T ∗1 )

∗ = (T ∗2 )∗
⇒ T ∗∗1 = T ∗∗2

⇒ T1 = T2.

Hence φ is one-one.
φ is onto: Let T ∈ B(H) then T ∗ ∈ B(H) and we have

φ(T ∗) = (T ∗)∗ = T ∗∗ = T

Hence, the mapping φ is onto.

Self-Adjoint Operator

Now we study some special types of operators defined on a Hilbert space. The
definitions and properties of these operators depend mostly on the properties of the
adjoint of an operator.

Definition 9.7. An operator A on a Hilbert space is said to be self-adjoint if it equals
its adjoint i.e. if A = A∗.

We know that 0∗ = 0 and 1∗ = 1, so zero and I are self adjoint operator. If is real
and A1 and A2 are self-adjoint, we claim that A1+A2 and αA1 are also self-adjoint. We
establish these facts in the form of a more general theorem:

Theorem 9.8. The self adjoint operators in B(H) form a closed real linear subspace of
B(H) and therefore a real Banach space-which contains the identity transformation.

Proof. If A1 and A2 are self-adjoint and if α and β are real numbers, then

(αA1 +βA2)
∗ = (αA1)

∗+(βA2)
∗

= αA∗1 +βA∗2
= αA∗1 +βA∗2.

[Since α,β are real and A∗1 = A1,A
∗
2 = A∗2.

⇒ αA1 +βA2 is also self-adjoint. Therefore set of all self-adjoint operators A in
β (H) is its linear subspace.
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Further, if < An > is a sequence of self-adjoint operators which converges to an
operator A, then it can be seen that A is also self-adjoint. In fact

‖A−A∗‖= ‖A−An +An−A∗n +A∗n−A∗‖
≤ ‖A−An‖+‖An−A∗n‖+‖A∗n−A∗‖
= ‖A−An‖+

∥∥(An−An)
∗∥∥

= ‖A−An‖+‖An−A‖ [using ‖A∗‖= ‖A‖]
= 2‖An−A‖→ 0.

⇒ A−A∗ = 0 so A = A∗.

Also I∗ = I.
Hence the set of all self-adjoint operators in B(H) form a closed linear subspace of

B(H) containing identity transformation and therefore is a real Banach space contain-
ing the identity transformation.

Theorem 9.9. If A1 and A2 are self-adjoint operators on H, then their product

A1 A2 is self-adjoint iff A1A2 = A2A1.

Proof. Suppose first that A1A2 is self-adjoint, then

A1A2 = (A1A2)
∗ = A∗2A∗1 = A2A1

Conversely suppose that A1A2 = A2A1.. Then

(A1A2)
∗ = A∗2A∗1 = A2A1 = A1A2

and therefore A1A2 is self-adjoint.

Theorem 9.10. If T is an arbitrary operator on H, then T = 0⇔ (T x,y) = 0 for all x
and y.

Proof. If T = 0, then (T x,y) = (0x,y) = (0,y) = 0 for all x,y ∈ H. On the other hand
if (T x,y) = 0 for all x and y in H, then in particular (T x,T x) = 0 for all x ∈ H which
means that T x = 0 for all x ∈ H and therefore T = 0.

Theorem 9.11. If T is an operator on H, then T = 0 iff (T x,x) = 0 for all x.
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Proof. If T = 0, then

(T x,x) = (0x,x) = (0,x) = 0 ∀ x ∈ H.

Conversely suppose that (T x,x) = 0 for all x ∈ H. We shall show that T = 0, which
holds if (T x,y) = 0 for all xy∈H. So it suffices to prove that (T x,y) = 0 for all x,y∈H.
The proof of this depends on the following identity.

(T (αx+βy) ,αx+βy)−|α|2 (T x,x)−|β |2 (Ty,y) = αβ (T x,y)+αβ (Ty,x)
(1)

By our hypothesis, the left side of (1) and therefore the right side as well equals zero
for all α and β . If we put α = 1,β = 1 in (1), we get

(T x,y)+(Ty,x) = 0 (2)

and if we put α = i and β = 1, we get

i(T x,y)− i(Ty,x) = 0

and therefore

(T x,y)− (Ty,x) = 0 (3)

Adding (1) and (3), we have

(T x,y) = 0 for all x,y ∈ H.

Hence T = 0.

Theorem 9.12. An operator T on H is self adjoint iff (T x,x) is real for all x.

Proof. If T is self adjoint, then

(T x,x) = (x,T x) = (x,T ∗x) = (T x,x)

shows that (T x,x) is real for all x, On the hand, if (T x,x) is real for all x, then

(T x,x) = (T x,x) = (x,T ∗x) = (T ∗x,x)

⇒ ((T −T ∗)x,x) = 0

⇒ T −T ∗ = 0

⇒ T = T ∗



Functional Analysis:- Author: Dr. Vizender Singh Vetter: Dr. Ramesh Kumar Vats 141

Definition 9.13. If A1 and A2 are self-adjoint operators on a Hilbert space H, we write
A1 ≤ A2 if (A1x,x)≤ (A2x,x) for all x ∈ H.

Theorem 9.14. The real Banach space of all self-adjoint operators on H is a partially
ordered set whose linear structure and order structure are related by following proper-
ties:

(i) If A1 ≤ A2, then A1 +A≤ A2 +A for every A.

(ii) If A1 ≤ A2 and α ≥ 0, then A1 ≤ αA2.

Proof. Suppose B is the Banach space consisting of all self-adjoint operators on H. We
define relation ≤ on B by

A1 ≤ A2 if (A1x,x)≤ (A2x,x) ∀ x ∈ H,A1,A2 ∈ B.

Then

(i) (Ax,x) = (Ax,x)∀x ∈ H,A ∈ B implies A≤ A∀A ∈ B. Hence ≤ is reflexive.

(ii) If A1,A2 ∈ B such that A1 ≤ A2 and A1 ≤ A2, then

A1 ≤ A2⇒ (A1x,x)≤ (A2x,x)

A2 ≤ A1⇒ (A2x,x)≤ (A1x,x)

Combining these two expressions, we have

(A1x,x) = (A2x,x)

⇒ ((A1−A2)x,x) = 0⇒ A1−A2 = 0

⇒ A1 = A2

Therefore the relation ≤ is anti-symmetric.

(iii) Let A1,A2,A3 ∈ B such that A1 ≤ A2 and A2 ≤ A3. Then

A1 ≤ A2⇒ (A1x,x)≤ (A2x,x)

A2 ≤ A3⇒ (A2x,x)≤ (A3x,x)

On both of these yield

(A1x,x)≤ (A3x,x)

⇒ A1 ≤ A3 .

Thus the relation is transitive.
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Hence ≤ is a partially ordered relation. Now we prove the relation (1) and (2)

A1 ≤ A2⇒ (A1x,x)≤ (A2x,x) (1)

⇒ (A1x,x)+(Ax,x)≤ (A2x,x)(Ax,x)

⇒ ((A1 +A)x,x)≤ ((A2 +A)x,x)

⇒ A1 +A≤ A2 +A

A1 ≤ A2⇒ (A1x,x)≤ (A2x,x) (2)

⇒ α (A1x,x)≤ α (A2x,x)

⇒ (αA1x,x)≤ α (A2x,x)

⇒ ((αA1)x,x)≤ ((αA2)x,x)

⇒ αA1 ≤ αA2∀α ≥ 0.

Hence theorem.

Positive Operator

Definition 9.15. A self-adjoint operator A is said to be positive if A≥ 0, i.e. (Ax,x)≥ 0
for all x.

It is clear that 0 and I are positive, as are T ∗T and T T ∗ for an arbitrary operator T .

Theorem 9.16. If A is a positive operator on H, then I+A is non-singular. In particular
I +T ∗T and I +T T ∗ are non-singular for an arbitrary operator T on H.

Proof. We must show that I +A is one to one onto as a mapping of H into itself. First
of all we observe that

(I +A)(x)⇒ x+Ax = 0

⇒ Ax =−x⇒ (Ax,x) = (−x,x)≥ 0.

⇒−‖x‖2 ≥ 0⇒ x = 0, ∀x ∈ H.

Then

(I +A)(x) = (I +A)y⇒ (I +A)(x− y) = 0.

⇒ x− y = 0⇒ x = y

⇒ I +A is one-to-one.
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It remains to show that I +A is onto. It is sufficient to prove that range of I +A equals
H. Let M be the range of I +A. Then

‖(I +A)x‖2 = ‖x+Ax‖2 = (x+Ax,x+Ax)

= (x,x)+(x,Ax)+(Ax,x)+(Ax,Ax)

= ‖x‖2 +2(Ax,x)+‖Ax‖2 [since (Ax,x) is real]

≥ ‖x‖2

⇒ ‖x‖2 ≤ ‖(I +A)x‖2 .

By this inequality and the completeness of H,M is complete and therefore closed. Sup-
pose that M ⊂ H. Then a non-zero vector x0⊥M such that

(x0,(I +A)x0) = 0

⇒ (x0,x0)+(x0,Ax0) = 0

⇒ ‖x0‖2 +(Ax0,x0) = 0

⇒ ‖x0‖2 +(Ax0,x0)≤ 0

⇒ x0 = 0.

which contradicts the fact that x0 is a non-zero vector.
Hence M = H. It follows therefore that I +A is one-to-one and onto and hence

non-singular.

Normal Operator

Definition 9.17. An operator N on a Hilbert space H is said to be normal if it commutes
with its adjoint that is NN∗ = N∗N.

Theorem 9.18. The set of all normal operators on H is a closed subset of B(H) which
contains the set of all self-adjoint operator and is closed under scalar multiplication.

Proof. If N is a self-adjoint operator, then

N∗ = N⇒ NN∗ = N∗N.

Thus it follows that every self-adjoint operator is normal. Therefore the set M contains
the set of all self-adjoint operators.

Let α be a scalar and N a normal operator, then

(αN)(αN)∗ = (αN)(αN∗)
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= αα (NN∗)

= αα (N∗N)

= (αN∗)(αN)

= (αN)∗ (αN)

Now consider the set M of all normal operators on H. It is clearly a subset of β (H).
To show that it is closed, it is sufficient to prove that every Cauchy sequence {Nk} of
normal operators on H converges to a normal operator. Due to the completeness of
β (H) this sequence converges to some operator N we shall show that N is normal.
Since N∗k → N∗, we have

‖NN∗−N∗N‖= ‖NN∗−NkN∗k +NkN∗k −N∗k Nk +N∗k Nk−N∗N‖
≤ ‖NN∗−NkN∗k ‖+‖NkN∗k −N∗k Nk ‖+‖N∗k Nk−N∗N‖
= ‖NN∗−NkN∗‖+‖N∗k Nk−N∗‖→ 0

≤ ‖NN∗−NkN∗‖+‖N∗k Nk−N∗‖→ 0

which implies that

NN∗−N∗N = 0

⇒ NN∗−N∗N

therefore N is normal.

Theorem 9.19. If N1 and N2 are normal operators on a Hilbert space H with the prop-
erty that either commutes with the adjoint of the other, then N1 +N2 and N1 N2 are
normal.

Proof. We are given that

N1N∗1 = N∗1 N1,N2N∗2 = N∗2 N2

N1N∗2 = N∗2 N1,N2N∗1 = N∗1 N2

We show first that N1 +N2 is normal. For this, we have.

(N1 +N2)(N1 +N2)
∗ = (N1 +N2)(N∗1 +N∗2 )

= N1N∗1 +N1N∗2 +N2N∗2 +N2N∗2
= N∗1 N1 +N∗2 N1 +N∗1 N2 +N∗2 N2
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= (N∗1 +N∗2 )(N1 +N2)

= (N1 +N2)
∗ (N1 +N2)

which shows that N1 +N2 is normal.
Similarly

(N1N2)(N1N2)
∗ = (N1N2)(N∗2 N∗1 )

= N1 (N2N∗2 )N∗1
= N1 (N

∗
2 N2)N∗1

= (N1N∗2 )(N1N∗2 )

= (N∗2 N1)(N∗1 N2)

= N∗2 (N1N∗1 )N2

= (N∗2 (N
∗
1 N1)N2

= (N∗2 N∗1 )(N1N2)

= (N1N2)
∗ (N1N2)

⇒ N1N2 is normal.

Theorem 9.20. An operator on a Hilbert space H is normal if and only if

‖T ∗x‖= ‖T x‖ for everyx.

Proof. T is normal iff

T T ∗ = T ∗T ⇔ T T ∗−T ∗T = 0

⇒ ((T T ∗−T ∗T )x,x) = 0 ∀ x ∈ H

[since an operator T on H is zero iff (T x,x) = 0 ]

⇔ (T T ∗x,x) = (T ∗T x,x) ∀x ∈ H

⇔ (T ∗x,T ∗x) = (T x,T x) ∀x ∈ H

⇔ ‖T ∗x‖2 = ‖T x‖2 ∀x ∈ H

⇔ ‖T ∗x‖= ‖T x‖ ∀x ∈ H

Theorem 9.21. If N is a normal operator on H, then∥∥N2∥∥= ‖N‖2
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Proof. Since N is normal, we have

‖N∗x‖= ‖Nx‖ ∀ x ∈ H (*)

⇒
∥∥N2∥∥= sup

{∥∥N2x
∥∥ ;‖x‖ ≤ 1

}
= sup{‖N(Nx)‖ ;‖x‖ ≤ 1}
= sup{‖N∗(Nx)‖ ;‖x‖ ≤ 1}
= sup{‖N∗Nx‖ ;‖x‖ ≤ 1}

[by the property of adjoint operation on β (H)]

Remark 9.22. For an arbitrary operator T on a Hilbert space, we form

A1 =
T +T ∗

2
, A2 =

T −T ∗

2

It can be shown that A1 and A2 are self adjoint and they have the property that

T = A1 + iA2

In fact

A∗1 =
1
2
(T +T ∗)∗ =

1
2
(T ∗+T )

=
T +T ∗

2
= A1⇒ A1 is self-adjoint

and

A∗2 =
[

1
2i
(T −T ∗)

]∗
=− 1

2i
(T −T ∗)

=
1
2i
(T −T ∗) = A2

⇒ A2 is self-adjoint.

A1 + iA2 =
T +T ∗

2
+

T −T ∗

2
= T

Theorem 9.23. If T is an operator on H, then T is normal ⇔ its real and imaginary
parts commute.

Proof. If A1 and A2 are real and imaginary parts of T so that T = A1 + iA2 and
T ∗ = A1− iA2 ,then

T T ∗ = (A1 + iA2)(A1− iA2) = A2
1 +A2

2 + i(A2A1−A1−A2)
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and
T ∗T = (A1− iA2)(A1 + iA2) = A2

1 +A2
2 + i(A1A2−A2A1)

It is clear that if A1A2 = A2A1. Then T T ∗ = T ∗T .
Conversely T is normal iff

T T ∗ = T ∗T

⇔ A1A2−A2A1 = A2A1−A1A2

⇔ 2A1A2 = 2A2A1

⇔ A1A2 = A2A1.

Unitary Operator

Definition 9.24. An operator U on H is said to be unitary if UU∗ =U∗U = I.

Theorem 9.25. If T is an operator on H, then the following conditions are all equivalent
to one another.

(1) T ∗T = I

(2) (T x,Ty) = (x,y) for all x and y

(3) ‖T (x)‖= ‖x‖ for all x.

Proof. (1)⇒(2).
If T ∗T = I, then

(T x,Ty) = (x,T ∗Ty) = (x, Iy) = (x,y)

for all x and y
(2)⇒(3). If (T x,Ty) = (x,y) = ‖x‖2 for all x and y, then taking y = x, we have

(T x,T x) = (x,x) = ‖x‖2

⇒ ‖(T x)‖2 = ‖x‖2

⇒ ‖(T x)‖= ‖x‖ ∀ x.

(3)⇒(1) when

‖T (x)‖= ‖x‖
⇒ ‖T (x)‖2 = ‖x‖2
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⇒ (T x,T x) = (x,x)

⇒ (T ∗T x,x) = (Ix,x)

⇒ ((T ∗T − I)x,x) = 0 ∀ x ∈M

⇒ T ∗T − I = 0

⇒ T ∗T = I.

Theorem 9.26. An operator T on H is unitary iff it is an isometric isomorphism of H
onto itself.

Proof. If T is unitary, then we know from the definition that it is onto.
Moreover since T ∗T = I, by the previous Theorem.

‖T (x)‖= ‖x‖ ∀ x ∈ H.

Hence T is an isometric isomorphism of H onto itself.
Conversely if T is an isometric isomorphism of H onto itself, then T is a one-one

mapping onto H such that

‖T (x)‖= ‖x‖ ∀ x ∈ H

and so by the above theorem, T ∗T = I.
Since T is an isometric isomorphism of H onto itself, T−1 exists and then

T ∗T = I⇒ T ∗ = T−1.

Also we note that

T T ∗ = T T−1 = I

⇒ T ∗T = T T ∗ = I

⇒ T is unitary.
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CHAPTER 10

Projections and Orthonormal Sets in Hilbert Spaces

We know that a projection on a Banach space B is an idempotent operator on B i.e. an
operator P with the property P2 = P. It was proved that each projection P determines
a pair of closed linear subspaces M and N, the range and null space of P such that
B = M⊕N and also conversely that each such pair of closed linear subspaces M and N
determines a projection P with range M and null space N.

The structure which a Hilbert space H enjoy in addition to being a Banach space
enables to single out for special attentions those projections whose range and null space
are orthogonal.

We start the chapter with following theorem:

Theorem 10.1. If P is a projection on H with range M and null space N, then M
⊥N⇔ P is self-adjoint and in this case N = M⊥.

Proof. Since P is projection on a Hilbert space H with range M and null space N, we
have H = M⊕N, so each vector z ∈ H can be written uniquely in the form z = x+ y,
x ∈M, y ∈ N.

If M⊥N, then (x,y) = (y,x) = 0. Therefore for all z in H, we have

(P∗z,z) = (z,Pz) = (z,x) = (x+ y,x)

= (x,x)+(y,x) = (x,x) .

and

(Pz,z) = (x,z) = (x,x+ y) = (x,x) = (x,y) = (x,x)

⇒ (P∗z,z) = (Pz,z)

⇒ [(P∗−P)z,z] = 0

⇒ P∗−P = 0⇒ P∗ = P.

Conversely suppose that P∗ = P, to prove that M⊥N, it is sufficient to show that if x
and y are arbitrary elements of M and N respectively, then (x,y) = 0.

In fact we have,

(x,y) = (Px,y) = (x,P∗y) = (x,Py)
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= (x,0) = 0. {N is the null space y ∈ N, P(y) = 0}

Hence M⊥N.
It remains to prove that if M⊥N. Then N = M⊥. It is clear that N ⊆M⊥ and if N

is a proper subset of M⊥ and therefore a proper closed linear subspace of the Hilbert
space M⊥, there exists a non-zero vector z0 in M⊥ such that z0⊥N.

Since z0⊥M and z0⊥N and H = M⊕N. It follows that z0⊥H. This is impossible
and hence N = M⊥.

Definition 10.2. A projection on H whose range and null space are orthogonal is called
a prependicular projection.

The only projections considered in the theory of Hilbert spaces are those which are
perpendicular.

In the light of above theory an operator P on a Hilbert space H is a perpendicular
projection if P2 = P and P∗ = P.

Moreover P is projection on M only if (I− f ) is a projection on M⊥.

Theorem 10.3. If P and Q are the projections on closed linear subspaces M and N of
H. Then M⊥N⇔ PQ = 0⇔ QP = 0.

Proof. If M⊥N, then N ⊆M⊥. Since Q is a projection on N,Qz is in N for each z ∈H.
Therefore

Qz ∈M⊥⇒ P(Qz) = 0 ⇒ PQ(z) = 0⇒ PQ = 0.

Moreover taking adjoint, we have

PQ = 0⇒ (PQ)∗ = 0∗

Hence M⊥N⇒ PQ = 0QP = 0.
Conversely suppose that QP = 0

⇒ PQ = 0, then for x ∈M or y ∈ N,

= (x,y) = (Px,Qy) = (x,P∗Qy)

= (x,PQy) = (x,0.y) = (x,0) = 0.

Hence M⊥N.

Therefore QP = 0⇒ PQ = 0⇒M⊥N.
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Definition 10.4. Two projections P and Q are orthogonal if PQ = 0.

Theorem 10.5. If P1,P2, . . . ,Pn are the projections on closed linear subspaces M1,M2, . . . ,Mn

of H, then P = P1 +P2 + . . .+Pn is a projection ⇔ P′i s are pairwise orthogonal (in
the sense that PiPj = 0 whenever i 6= j) and in this case, P is the projection on M =

M1 +M2 + . . .+Mn.

Proof. Each Pi is a perpendicular projection therefore P∗i = Pi = P2
i for i = 1,2, . . . ,n.

Then

P∗ = (P1 +P1 + . . .+Pn)
∗ = P∗1 + . . .+P∗1

= P1 +P2 + . . .+P1+= P.

Hence P is self-adjoint. Now P is a projection i 6= j it is idempotent.
If Pi’s are pairwise orthogonal, then

PiPj = 0 for i 6= j

Hence

P2 = (P1P2 + . . .+Pn)
2

=
n

∑
i=1

P2
i +2 ∑

i6=1
PiPj

=
n

∑
i=1

X = Pi [∵ P2
i = Pi and PiP j = 0]

= P

⇒ P is idempotent.

Thus we have proved that if P are pairwise orthogonal, then P is a projection.
To prove the converse we assume that P is idempotent. Let x be a vector in the

range of Pi so that Pi (x) = x.
Then

‖x‖1 = ‖Pi (x)‖2

≤
n

∑
j=1

∥∥Pj (x)
∥∥2

=
n

∑
j=1

(
Pjx,Pj (x)

) n

∑
j=1

(
Pjx,P∗j x

)
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=
n

∑
j=1

(
P2

j x,x
)

=
n

∑
j=1

(
Pjx,x

)
= [(P1 +P2 + . . .+Pn)x,x]

= (Px,x) =
(
P2x.x

)
= (Px,P∗x)

= (Px,Px)‖Px‖2 ≤ ‖x‖2

Since

‖x‖2 = ‖Px+(I−P)x‖2

= ‖Px‖2 +‖(I +P)x‖2 [Pythagorean theorem]

⇒ ‖P(x)‖2 ≤ ‖x‖2

Hence

‖x‖2 ≤
n

∑
j=1

∥∥Pj (x)
∥∥2 ≤ ‖x‖2⇒‖x‖2 =

n

∑
j=1

∥∥Pj (x)
∥∥2

n

∑
j=1

∥∥Pjx
∥∥2

=
∥∥Pj (x)

∥∥2
= ‖x‖2

[Since ‖Pi (x)‖2 = ‖x‖2].
which implies that

∥∥Pj (x)
∥∥= 0 for j 6= i.

Now Pi (x) = 0⇒ x ∈ Null space of Pj for j 6= i. Thus range of Pi is contained in
the null space of Pi i.e. Mi ⊆M⊥j for every i 6= j and this means that Mi⊥M j for i 6= j.
Hence [by the preceding theorem] Pi’s are pairwise orthogonal.

We now show that P is a projection on M. Firstly we observe that since ‖P(x)‖ =
‖x‖∀x ∈Mi,, each Mi is contained in the range of P and therefore M = ∑

n
i=1 Mi is also

contained in the range of P.
Secondly if x is a vector in the range of P, then

x = Px = (P1 +P2 + . . .+Pn)x.

= P1x+P2x+ . . . .+Pnx

is evidently in M = ∑
m
i=1 Mi since Pix ∈Mi.

Hence the theorem.
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Definition 10.6. A closed linear subspace M of a Hilbert space H is said to be invariant
under an operator T on H if T (M)⊆M.

If both M and M⊥ are invariant under T , then we say that M reduces T (or that T is
reduced by M).

Theorem 10.7. A closed linear subspace M of H is invariant under an operator T⇔M⊥

is invariant under T ∗.

Proof. Suppose first that M is invariant under an operator T , then T (x) ∈ M for all
x ∈M. We shall show that M⊥ is invariant under T ∗. If y is any vector of M⊥.

Then

(x,y) = 0 for all x ∈M.

(x,T ∗y) = (T x,y) = 0 since T x ∈M.

⇒ T ∗y ∈M⊥ for all yy ∈M⊥

Hence M⊥ is invariant under T ∗.
Conversely suppose that M is invariant under T ∗. Then M is invariant under (T ∗)∗=

T ∗∗. But M⊥⊥ = M and T ∗∗ = T .
Therefore it follows that M is invariant under T .

Theorem 10.8. A closed linear subspace M of H reduces an operator T ⇔M is invari-
ant under both T and T ∗.

Proof. By definition we know that M reduces T
⇔M is invariant under T and M⊥ is invariant under T
⇔M is invariant under T and M is invariant under T ∗ [By previous Theorem].
⇔M is invariant under both T and T ∗.

Theorem 10.9. If P is a projection on a closed linear subspace M of H, then M is
invariant under an operator T ⇔ T P = PT P.

Proof. If M is invariant under T and x is an arbitrary vector in H, then

x ∈ H⇒ P(x) ∈M⇒ T (P(x))⊂M

⇒ T P(x) ∈M

⇒ P(T P(x)) = T P(x)



154

⇒ ({PT P)(x) = T P(x)

⇒ PT P = T P.

Conversely if T P = PT P and x is a vector in M then

P(x) = x

⇒ T (P(x)) = T (x)

⇒ PT (P(x)) = T (x)

But T P(x) ∈M, therefore T (x) ∈M.
Hence M is invariant under T .

Theorem 10.10. If P is the projection on a closed linear subspaces M of H, then M
reduces an operator T ⇔ T P = PT .

Proof. By a result proved above, M reduces T iff M is invariant under T and

T ∗ iff T P = PT P and T ∗P = PT ∗P

⇔ T P = PT P and (T ∗P)∗ = (PT ∗P)∗

⇔ T P = PT P and

P∗T ∗∗ = P∗T ∗∗P∗⇔ T P = PT P

and PT = PT P [∵ ’P∗ = P and T ∗∗ = T ]

⇔ T P = PT.

Reflexivity of Hilbert space

Let H be a Hilbert space with inner product denoted by (y,x). The dual (conjugate
space) H∗ is then a Hilbert space with inner product given by (x∗,y∗) = (y,x) for each
x∗ and y∗ in H∗ where x→ x∗ and y→ y∗ under the mapping H→ H∗.

We now establish the following result concerning the reflexivity of a Hilbert space.

Theorem 10.11. Every Hilbert space is reflexive.



Functional Analysis:- Author: Dr. Vizender Singh Vetter: Dr. Ramesh Kumar Vats 155

Proof. Let H∗ denote the dual space of a Hilbert space H. Consider the mapping T
defined by

T : H→ H∗

y→ Ty = f (1)

where the bounded linear functional f is, for any x ∈ X , given by

(Ty)(x) = f (x) = (x,y) (2)

Suppose now that under T ,
y1→ f1

and
y2→ f2

and let y1→ f1→ g

Thus

g(x) = (x,y1 + y2)

= (x,y1)+(x,y2)

= f1 (x)+ f2 (x)

and we conclude that
T (y1 + y2) = T (y1)+T (y2)

Showing that T is additive. Now suppose under T,y→ f . and for a scalar α , let
T (αy) = h, then

y(x) = (x,αy) = a(x,y) = a f (x)

therefore
T (αy) = aT (y)

Showing that T is conjugate linear. Also, by Riesz-Representation theorem for bounded
linear functionals on a Hilbert space, to each bounded linear function f , there exists a
unique y, y ∈ H such that for every x ∈ H, f (x) = (x,y) and ‖ f‖= ‖y‖ . In view of this
the mapping T is onto and further

‖ f‖= ‖Ty‖= (y)(y→ Ty = f )

Therefore T is norm-preserving mapping or isometry. As we know that an isometry
is always a 1−1 mapping.
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Thus we have, the mapping T constitutes a 1− 1 onto isometric, conjugate linear
mapping from a Hilbert space onto conjugate space. Thus we see that Hilbert space
and their conjugate spaces are indistinguishable metrically and almost indistinguishable
algebraically. [Almost because T is conjugate linear]

Let x∗ be a bounded linear functional on H and x ∈ H Denote x∗ (x) = [x,x∗] . Con-
sider the mapping

J : H→ H∗H∗

x→ x∗∗

where for defining equation for Jx we have for any x ∈ H∗

x∗∗ (x∗) = [x∗,x∗∗] = [x∗,x] = x∗ (x) (3)

We now show that x∗∗ is a bounded linear functional. Let x∗ ∈ X∗, then

|x∗∗ (x∗)|= |x∗ (x)| ≤ |x∗‖ ‖x‖
⇒ ‖x∗∗‖ ≤ ‖x‖ (*)

Further if x = 0, then
0≤ ‖x∗∗‖ ≤ 0.

And consequently ‖x∗∗‖= ‖x‖= 0
If x is a non zero vector, then there must be some bounded linear functional x∗0 with

norm 1 such that x∗0 (x) = ‖x‖. But

‖x∗∗‖= sup
‖x∗‖=1

|x∗∗ (x∗)|

= sup
‖x∗‖=1

|x∗ (x)|

≥ |x∗ (x)|= ‖x‖ (**)

Thus ‖x∗∗‖= ‖x‖.
⇒ J is an isometry. Since isometry is always a 1− 1 mapping, it follows that J is

an isomorphism. It remains to show that J is onto. To this end, let f be an element of
H∗∗. We must find z ∈ H such that Jz = f . For T defined in (1) consider the functional
g defined by

g :→ f

x→ f (T (x))
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For x1x2 ∈ H, consider

g(x1 + x2) = f (T (x1 + x2))

= f (T x1 +T x2)

= f (T (x1))+ f (T (x2))

= g(x1)+g(x2)⇒ g is additive. (4)

Now let x ∈ H, α ∈ F , then

g(αx) = f (T αx)

= f (αT (x))

= α f (T (x))

= α.g(x)

Hence g is linear.
Further since T is an isometry, we have

|g(x)|=
∣∣∣ f (T (x))

∣∣∣= | f (T x)| ≤ ‖ f‖ ‖T x‖

= ‖ f‖ ‖x‖

Thus g is bounded.
By Riesz-Representation Theorem, ∃ z ∈ H such that for all x ∈ H,

g(x) = (x,z)

or

f (T x) = (x,z)

⇒ f (T x) = (z,x) (5)

On the other hand by the definition of J and T (using (2) and (3)

(Jz)(T x) = z∗∗ (T x) = T x(z) = (z,x) (6)

Thus (5) and (6) yield that Jz and f agree on every member of H∗. Hence they are same.
This completes the proof.

Example 10.12. Show that a Hilbert space is finite dimensional ⇔ every complete
orthonormal set is a basis.
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Solution. Let H be a finite dimensional Hilbert space of dimensional n. Let S =< ei >

be a complete orthonormal set in H. Then we have to show that S is a basis for H.
Since S is an orthonormal set, therefore it is linearly independent.

Also S must be a finite set because it can not contain more than n vectors. [since H is
finite dimensional]. Now let x∈H. Since S is a complete orthonormal set, therefore we
have x = ∑ei∈s (x,ei)ei. Thus each vector x in H can be written as linear combination
of vectors in the set S and so S generates H. Therefore S is a basis for H. [Thus in a
finite dimensional Hilbert space of dimension n every complete orthonormal set must
contain exactly n vectors].

Conversely suppose that every complete orthonormal set in a Hilbert space H is a
basis for H. Then to show that H is finite dimensional. Let S be a complete orthonormal
set in H. Then by hypothesis S is a basis for H. We are to show that S is infinite set.
Suppose is infinite. Then we can certainly extract a denumerable sequence of distinct
points of S

e1,e2,e3, . . . ,en, . . .

Consider now the series
∞

∑
n=1

1
n2 en.

Since the series ∑
∞
n=1

1
n4 is convergent ⇒, the series ∑

∞
n=1

1
n2 en. is convergent [by the

result that. Let H be a Hilbert space and let S =< e1,e2,e3, . . . ,en, . . . > be countably
infinite orthonormal set in H. Then a series of the form ∑

∞
n=1 αnen is convergent iff

∑
∞
n=1 |αn|2 < ∞.

Thus the series ∑
∞
n=1

1
n2 en. must converge to some vector x in H. Since S is a basis

for H, therefore we can write x as some finite linear combination of vectors in S. Let

x = αλ eλ + . . .+αµeµ

where eλ , . . .eµ ∈ S and, αλ , . . . ,αµ , are scalars. Let j be any positive integer having
value different from the values of indices λ , . . . ,µ We have(

x,e j
)
=
(
αλ eλ + . . .+αµeµe j

)(
x,e j

)
=
(
αλ eλ + . . .+αµeµ ,e j

)
= 0.

Also (
x,e j

)
=

(
∞

∑
n=1

1
n2 ene j.

) [
∵ x =

∞

∑
n=1

1
n2 en

]
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=
1
n2

Thus we have = 1
n2 = 0 which is not possible. Therefore the set S must be finite and H

is finite dimensional.

Theorem 10.13. Prove that any two complete orthonormal sets in a Hilbert space H
have the same cardinal number.

Proof. Let S1 and S2 be two complete orthonormal sets in a Hilbert space H.

Suppose one of these sets is finite. Let S1 be finite and S1 = {e1,e2, . . . ,en} ..

Since S1 is an orthonormal set, therefore it is linearly independent. Also since S1 is
complete, therefore if x ∈ H, then we have

x =
n

∑
i=1

(x,ei)ei

Thus S1 generates H. Therefore S1 is a basis for H and so H is finite dimensional and
dim H = n. Since S2 is also a complete orthonormal set in H, therefore S2 must also be
a basis for H. Since S1 and S2 are both bases for H, therefore they must have the same
number of elements.

Now let us suppose that both S1 and S2 are infinite sets. Let x ∈ S1 and let S2 (x) =
{y : y ∈ S2 and (y,x) 6= 0}. Then S2 (x) is a subset of S2 and thus S2 (x) is a countable
set . Let z be any arbitrary member of S2. Since S1 is a complete orthonormal set and
therefore by Parseval’s identity, we have

‖z‖2 = ∑
x∈S1

|(z,x)|2

But z ∈ S2⇒ z is a unit vector.
Therefore we have

1 = ∑
x∈S1

|(z,x)|2 .

From this relation we see that there must exist some vector x ∈ S1 such that (z,x) 6= 0.
Then by our definition of S2 (x), we have z ∈ S2 (x). Thus z ∈ S2⇒ z ∈ S2 (x) for some
x ∈ S1. Therefore we have

S2 =
⋃

x∈S1

S2 (x) (1)
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Let n1,n2, be the cardinal numbers of S1, S2 respectively. Since the cardinal number of
the union of an arbitrary collection of sets can not exceed the cardinal number of index
set, therefore n2,≤ n1,. Interchanging the roles of S1 and S2 we get n1 ≤ n2. Therefore
we have n1 = n2.

Remark 10.14. Let S be a complete orthonormal set in a Hilbert space H. Then the
cardinal number of S is said to be the orthogonal dimension of H. If H has no complete
orthonormal set i.e. if H is the zero space, then the orthogonal dimensional of H is said
to be zero.

Definition 10.15. Operators S and T are said to be metrically equivalent if ‖Sx‖= ‖T x‖
∀ x ∈ H..

Theorem 10.16. Operators S and T are metrically equivalent if S∗S = T ∗T

Proof. Let S and T be metrically equivalent

‖Sx‖= ‖T x‖ ∀ x ∈ H.

⇔ (S∗Sx,x) = (Sx,Sx) = ‖Sx‖2 = ‖T x‖2

= (T x,T x) = (T ∗T x,x)

⇒ ((S∗S−T ∗T )x,x) = 0

⇒ S∗S−T ∗T = 0

⇒ S∗S = T ∗T.

Theorem 10.17. An operator T is normal iff T and T ∗ are metrically equivalent.

Proof. Suppose T is normal⇒ T ∗T = T T ∗ and so by the above theorem, T ∗ and T are
metrically equivalent.

Conversely suppose that T and T ∗ are metrically equivalent

⇒ ‖T ∗x‖= ‖T x‖
⇒ T ∗T = T T ∗

⇒ T is normal.

Finite Dimensional Spectral Theory

First we give basic definitions and results.



Functional Analysis:- Author: Dr. Vizender Singh Vetter: Dr. Ramesh Kumar Vats 161

Definition 10.18. Let T be an operator on a Hilbert space H. A vector x ∈ H is said to
be a proper vector (eigen-vector, latent vector or characteristic vector) for the operator
T if (i) x 6= 0 and (ii) T x = ux for a suitable scalar u. if also T x = vx, then T x = ux and
T x = vx implies (u− v)x = 0. Since x 6= 0, it follows that u = v. Thus a proper vector
x determines uniquely the associated scalar u.

Definition 10.19. A scalar u is said to be a proper value (Eigen value, latent root or
characteristic root(value)) for the operator T in case there exists a non-zero vector x
such that T x = ux,.

Thus u is a proper value for T if and only if the null space of (T − uI) is not equal to
{0}.

Remark 10.20. If the Hilbert space H has no non-zero vector at all, then T certainly
has no eigen vectors. In this case the whole theory collapses into triviality. So we
assume throughout this lesson that H 6= {0}.

Theorem 10.21. If T is a normal operator, x is a vector and u is a scalar, then T x = ux
if and only if T ∗x = ux. In particular

(1) x is a proper vector for T if and only if it is a proper vector for T ∗.

(2) u is a proper value of T if and only if it u is a proper value of T ∗.

Proof. By virtue of normality, T ∗T = T T ∗.
Since

(T −uI)∗ = T ∗−uI∗ = T ∗−uI.

we have

(T −uI)∗ = T ∗−uI∗ = T ∗−uI.

and

(T −uI)∗ (T −uI) = (T ∗−uI)(T −uI)

Since T T ∗ = T ∗T , it follows that T −uI is normal. Hence

‖(T −uI)x‖=
∥∥(T −uI)∗ x

∥∥
which in turn implies that T x = ux if and only if T ∗x = ux. This proves (1) and (2).
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Remark 10.22. Let H be a classical Hilbert space and x1,x2, . . . an orthonormal basis
for H. Then one sided shift operator T defined by T xk = xk+1 has no proper value.

Theorem 10.23. Let T be a normal operator on a Hilbert space H. Then there exists
on orthonormal basis for H consisting of eigen vectors of T .

Proof. Let λ be an eigen value of T and suppose x is corresponding eigen vector. Thus
we have T x = λx. Since x can not be zero, we can choose x1 =

x
‖x‖ , If the dimension

of H is 1, then we are done. If not, we will proceed by induction. We shall assume that
the theorem is true for all spaces of dimension less than H and then show that it follows
for x from this assumption.

Letting m = [x1] = {αx1,α ∈ F}. The space spanned by x1, we have the following
direct sum composition of H:

H = M⊕M⊥.

We must have then dim M⊥ < dimH. Since x1 is an eigen vector of T , we have T x1 =

λx1 and therefore it is clear that M is invariant under T . But we know by Theorem
1 that eigen vectors of T must also be eigen vectors for T ∗. Therefore M is invariant
under T ∗ also. Hence M is invariant under T ∗∗ = T . Thus we have

(i) M is invariant under T .

(ii) M⊥ is invariant under T .

Thus we can say that M reduces T .
Consider now the restriction of T to M⊥ denoted by T/M⊥ where T/M⊥ : M⊥→

M⊥. Since T is normal, T/M⊥ is also normal since M⊥ reduces T . Now since
dimM⊥ < dimH, we can apply the induction hypothesis to assert the existence of an
orthonormal basis for M consisting of eigen vector for T/M⊥;{x1,x2, . . . ,xn} . Eigen
vectors of T/M⊥ however must also the eigen vector of T . Hence for the entire space,
we have (x1,x2, . . . ,xn) as orthonormal basis of eigen vectors of T . Hence the result.
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Spectral Theorem for Finite Dimensional spaces

Definition 10.24. The set of eigen values of an operator T is called its spectrum or
point spectrum and is denoted by (T ).

Statement of Spectral Theorem

Theorem 10.25. Let λ1,λ2, . . . ,λn be the eigen values of an operator T and let M1,M2, . . . ,Mn

be their corresponding eigen spaces. If P1,P2, . . . ,Pn are the projections on these eigen
spaces, then the following three statements are equivalent to one another.

(1) M
′
is are pairwise orthogonal and span H.

(2) P
′
i s are pairwise orthogonal, that is PiPj = 0 for i 6= j and I = P1+P2+ . . .+Pn and

also

T = λ1P1 +λ2P2 + . . .+λnPnλn

(3) T is normal.

Proof. (1)⇒(2), by (1) every vector x in H can be expressed uniquely in the form

x = x1 + x2 + . . .+ xn, (4)

where xi ∈Mi for each i and x′is are pairwise orthogonal. Further (1) Mi⊥M j, i 6= j then
M j ⊂Mi. Then since Pjx = M j for every x, we have PiPjx = 0 for any x and PiPj = 0
for i 6= j. This proves that Pi’s are pairwise orthogonal.

Applying Pi to both sides of (4), we have

Pix = Pix1 +Pix2 + . . .+Pixn

= 0+0+ . . .+Pixi + . . .+0

= xi for any i.

Hence we can write any x as

x = P1x+P2x+ . . .+Pnx

or Ix = P1x+P2x+ . . .+Pnx for identity operator T .
or Ix = (P1 +P2 + . . .+Pnx)x
Since this is true for any x ∈ H, we conclude that

I = P1 +P2 + . . .+Pn
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Further applying T to x in (4), we have

T x = T x1 +T x2 + . . .+T xn

= λ1P1 +λ2P2 + . . .+λnPn

= (λ1P1 +λ2P2 + . . .+λnPn)x

for every x and so

T = λ1P1 +λ2P2 + . . .+λnPn (5)

The representation (5) for an operator T , when it exists is called the Spectral Represen-
tation or Spectral form of T .
(2)⇒(3), it follows from

T = λ1P1 +λ2P2 + . . .+λnPn

That

T ∗ = λ 1P∗1 +λ 2P∗2 + . . .+λ nP∗n
= λ 1P1 +λ 2P2 + . . .+λ nPn

Now since by (2) PiPj = 0 for i 6= j, we have

T T ∗ = (λ1P1 +λ2P2 + . . .+λnPn)(λ1P1 +λ 2P2 + . . .+λ nPn)

= |λ1|2 P2
1 + . . .+ |λn|2 P2

n

= |λ1|2 P1 + |λ2|2 P2 + . . .+ |λn|2 Pn

and similarly

T ∗T = |λ1|2 P1 + |λ2|2 P2 + . . .+ |λn|2 Pn

and therefore

T T ∗ = T ∗T.

Proving that T is normal.
(3)⇒(1): Suppose that T is normal.
We shall prove first that Mi⊥M j for i 6= j. Given xi ∈Mi,x j ∈Mi,, it is sufficient to

show that xi⊥xi. Since xi ∈Mi,x j ∈Mi,, we have T xi = λixi,T x j = λ jx j.
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Since T is normal T xi = λixi,T x j = λ jx j and so(
T xi,x j

)
=
(
xi,T ∗x j

)
or
(
λixi,x j

)
=
(
xi,λix j

)
or λi

(
xi,x j

)
= λ j

(
xi,x j

)
or
(
λi,λ j

)(
xi,x j

)
= 0

Since λi 6= λ j, it follows that
(
xix j
)
= 0 and hence xi⊥x j. This proves that Mi⊥M j

for i, j and so Mi’s are pairwise orthogonal. It remains to prove that T is normal,
then Mi’s span H that is. We have just H = M1 +M2 + . . .+Mn. Shown that M′is
are pairwise orthogonal. This implies that Pi’s are pairwise orthogonal. Therefore
M = M1 +M2 + . . .+Mn is a closed linear subspace of H and its associated projection
is P=P1+P2+. . .+Pn. Also we know that if T is normal, then Mi reduces T . Therefore
T Pi = PiT for each Pi, it follows from this that T P = PT and hence M reduces T and
so by definition M is invariant under T . If M 6= {0}, then since all the eigen vectors
of T are contained in M, the restriction of T to M is an operator (normal) on a non-
trivial finite dimensional Hilbert space which has no eigen vectors and hence no eigen
values. But this is a contradiction to the fact that there exists an orthonormal basis for
H consisting of eigen vectors of normal operator T . Hence M = {0} and so M = H and
hence which H = M1 +M2 + . . .+Mn shows that Mi’s span H.

Hence the result.
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